Velocity =
(distance between start point and end point, regardless of the route traveled) / (time spent traveling).
That distance (called the "displacement"), is 10 meters, and almost exactly 1 hour is almost exactly 3,600 seconds. So the numerical value of the velocity during that time is
(10) / (3,600) = almost exactly 0.00278 m/s
= 2.78 x 10^-3 m/s.
The heat released by the water when it cools down by a temperature difference

is

where
m=432 g is the mass of the water

is the specific heat capacity of water

is the decrease of temperature of the water
Plugging the numbers into the equation, we find

and this is the amount of heat released by the water.
DE which is the differential equation represents the LRC series circuit where
L d²q/dt² + Rdq/dt +I/Cq = E(t) = 150V.
Initial condition is q(t) = 0 and i(0) =0.
To find the charge q(t) by using Laplace transformation by
Substituting known values for DE
L×d²q/dt² +20 ×dq/dt + 1/0.005× q = 150
d²q/dt² +20dq/dt + 200q =150
<span>The term "displacement" includes a change of position or change in an innate characteristic.
The first option would have someone travel in an L-shape, which definitely is a change in position from the starting point.
The second option of Ferris wheel with the same entrance and exit does not involve overall displacement since a person would return to the same place they began.
The third option of walking around the block does not involve overall displacement since, again, the person would return to the same place they began.
The fourth option of an escalator ride does involve overall displacement because a person would finish their journey in a different vertical location from where they started.
The last option does not involve overall displacement because one lap around a track will return you to the same place you began.</span>