W = ∫ (x from 0.1 to +oo) F dx
= ∫ (x from 0.1 to +oo) A e^(-kx) dx
= A/k x [ - e^(-kx) ](between 0.1 and +oo)
= A/k x [ 0 + e^(-k * 0.1) ]
<span>
= A/k x e^(-k/10) </span>
When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will <u>"pull back".</u>
Newton's third law of motion expresses that, at whatever point a first question applies a power on a second object, the first object encounters a power meet in extent however inverse in heading to the power that it applies.
Newton's third law of movement reveals to us that powers dependably happen in sets, and one question can't apply a power on another without encountering a similar quality power consequently. We once in a while allude to these power matches as "action-reaction" sets, where the power applied is the activity, and the power experienced in kind is the response (despite the fact that which will be which relies upon your perspective).
with the same generator, so the only factor for producing
the slectric field is only the speed. The faster the rotational speed of the
generator the greater it produce electric field. So the sequence is 3000 rpm
< 3200 rpm < 3400 rpm < 3600 rpm
Velocity =
(distance between start point and end point, regardless of the route traveled) / (time spent traveling).
That distance (called the "displacement"), is 10 meters, and almost exactly 1 hour is almost exactly 3,600 seconds. So the numerical value of the velocity during that time is
(10) / (3,600) = almost exactly 0.00278 m/s
= 2.78 x 10^-3 m/s.