Answer:
The resistance will be 2×R
Explanation:
We note that the resistivity of a cylindrical wire is given by the following relation;

Where:
ρ = Resistivity of the wire
R = The wire resistance
A = Cross sectional area of the wire = π·D²/4
L = Length of the wire
Rearranging, we have;

If the length and the diameter are both cut in half, we have;
L₂ = L/2
A₂ =π·D₂²/4 =
Therefore, the new resistance, R₂ can be expressed as follows;

Hence, the new resistance R₂ = 2×R, that is the resistance will be doubled.
As the external magnetic field decreases, an induced current flows in the coil. The direction of the induced magnetic field would be pointing to the screen. The flux through the coil is said to decrease. In order to counter this change, the coil would generate or produce a magnetic field that is induced that would be pointing to the same direction as the external field that is flowing which is into the the screen. This is according to Lenz's law or the right hand rule. It states that an induced current in a circuit that is due to the change or motion in magnetic field should be directed opposing to the change in the flux.
Answer:
D
Explanation:
Speed = distance / time
her time for the first journey = 20 miles / 60 miles/hr = 1/3 hr
her time for second part of the journey = her remaining distance / her speed = (80 - 20) miles / 30 miles/hr = 60 miles / 30 miles/hr = 2 hrs
total time spend by her = 2 hr+ 1/3 hr = 2 1/3 hrs
her traveling the distance at 40 miles per hour = 80 miles / 40 miles /hr = 2 hrs
the time less she would drive if she drive the entire distance at 40 miles/hr = 2 1/3 hrs - 2 hrs = 1/3 hr
Kinetic energy. I hope that helps
<span>To find the wavelength of a neutron can be calculated by using the formula
Wavelength=h/m x v
Where h is planck's constant
m=mass of neutron
v= velocity of the particle
By substituting the given values
Wavelength= 6.63 × 10–34 j s / 1.675 × 10–27 kg x 2 m/s^-1
Wavelength of a neutron=1.979 x 10^-7 m</span>