The density of the substance is the ratio of its mass over the space it occupies. In mathematical equation, this can be expressed as,
ρ = m / v
where ρ is density, m is mass, and v is volume.
Substituting the known values from the given,
ρ = (45 g) / (8 cm³)
ρ = 5.625 g/cm³
<em>ANSWER: 5.625 g/cm³</em>
Answer:
-40 kJ
80 kJ
Explanation:
Work is equal to the area under the pressure vs volume graph.
W = ∫ᵥ₁ᵛ² P dV
2.27) Pressure and volume are linearly related. When we graph P vs V, the area under the line is a trapezoid. So the work is:
W = ½ (P₁ + P₂) (V₂ − V₁)
W = ½ (100 kPa + 300 kPa) (0.1 m³ − 0.3 m³)
W = -40 kJ
2.29) Pressure and volume are inversely proportional:
pV = k
The initial pressure and volume are 500 kPa and 0.1 m³. So the constant is:
(500) (0.1) = k
k = 50
The final pressure is 100 kPa. So the final volume is:
(100) V = 50
V = 0.5
The work is therefore:
W = ∫ᵥ₁ᵛ² P dV
W = ∫₀₁⁰⁵ (50/V) dV
W = 50 ln(V) |₀₁⁰⁵
W = 50 (ln 0.5 − ln 0.1)
W ≈ 80 kJ
Answer:
n (a neutron)
Explanation:
For a chemical element:
- The lower subscript indicates the atomic number (the number of protons)
- The upper subscript indicates the mass number (the sum of protons and neutrons in the nucleus)
In the reaction described in the problem, we see that a gamma photon hits a nucleus of Calcium-40, which has
Z = 20 (20 protons)
A = 40 (40 protons+neutrons)
Which means that the number of neutrons is n = A - Z = 40 - 20 = 20
After the reaction, we have a nucleus of Calcium-39, which has
Z = 20 (20 protons)
A = 39 (39 protons+neutrons)
Which means that the number of neutrons is n = A - Z = 40 - 39 = 19
So, the nucleus has lost 1 neutron, which is the particle missing in the reaction.
Answer:
if the river is 5km wide and is flowing at 4km/hr. eastwards find by scale ... Find either by scale drawing or by calculation (1) the direction in which he must ... He could row his boat directly across the river to point C and then run to B, or he ... A man who can swim at 5km/h in still water swims towards the east to cross arriver.
Explanation: