answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
2 years ago
10

A sled of mass m is being pulled horizontally by a constant horizontal force of magnitude F. The coefficient of kinetic friction

is mu_k. During time interval t, the sled moves a distance s, starting from rest.Find the average velocity vavg of the sled during that time interval.Express your answer in terms of the given quantities and, if necessary, appropriate constants. You may or may not use all of the given quantities.
Physics
1 answer:
lorasvet [3.4K]2 years ago
4 0

Answer:

The average velocity of the sled is vavg = s/t.

Explanation:

Hi there!

The average velocity is calculated as the traveled distance over time:

vavg = Δx/Δt

Where:

vavg = average velocity.

Δx = traveled distance.

Δt = elapsed time.

We already know the traveled distance (s) and also know the time it takes the sled to travel that distance (t). Then, the average velocity can be calculated as follows:

vavg = s/t

Have a nice day!

You might be interested in
How many significant figures do each of the following numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03, (e) 0.0086, (f) 3236
Korolek [52]

In determining the number of significant figures in a given number, there are three rules to always remember / follow:

First: All integers except zero are always significant.

<span>Second: Any zeros located between  non zeroes are always significant.</span>

Third: A zero located after a non zero in a decimal is always significant whether it is before or after the decimal

 

Therefore using this rule, the number of significant digits in the given numbers are:

(a) 214 = 3

(b) 81.60 = 4

(c) 7.03 = 3

(d) 0.03 = 1

(e) 0.0086 = 2

(f) 3236 = 4

(g) 8700 = 2

4 0
2 years ago
Two rigid rods are oriented parallel to each other and to the ground. The rods carry the same current in the same direction. The
Greeley [361]

Answer:

I = 215.76 A  

Explanation:

The direction of magnetic field produced by conductor 1 on the location of conductor 2 is towards left. Based on Right Hand Rule -1 and taking figure 21.3 as reference, the direction of force Fm due to magnetic field produced at C_2 is shown above. The force Fm balances the weight of conductor 2.  

Fm = u_o*I^2*L/2*π*d

where I is the current in each rod, d = 0.0082 m is the distance 27rId  

between each, L = 0.85 m is the length of each rod.

Fm = 4π*10^-7*I^2*1.1/2*π*0.0083

The mass of each rod is m = 0.0276 kg  

F_m = mg

4π*10^-7*I^2*1.1/2*π*0.0083=0.0276*9.8

I = 215.76 A  

note:

mathematical calculation maybe wrong or having little bit error but the method is perfectly fine

5 0
1 year ago
Determine a formula for the maximum height h that a rocket will reach if launched vertically from the Earth's surface with speed
olga55 [171]

Initially, the energies are:

U_{i}=-\frac{G M_{\varepsilon} m}{r_{e}} \\&#10;=K_{i}=\frac{1}{2} m v_{0}^{2}

At final point, the energies are:

U_{f}=-\frac{G M_{\varepsilon} m}{r_{e}+h} \\&#10;K_{f}=\frac{1}{2} m(0)^{2}=0

Using conservation law of energy,

-\frac{G M_{e} m}{r_{e}}+\frac{1}{2} m v_{0}^{2} &=-\frac{G M_{e} m}{r_{\varepsilon}+h} \\&#10;-\frac{G M_{e}}{r_{e}}+\frac{v_{0}^{2}}{2} &=-\frac{G M_{e}}{r_{e}+h} \\&#10;\frac{-2 G M_{e}+r_{e} v_{0}^{2}}{2 r_{e}} &=-\frac{G M_{e}}{r_{e}+h} \\&#10;\frac{r_{e}+h}{G M_{e}} &=\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}

The equation is further simplified as:

r_{e}+h &=\left(\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}\right) G M_{e} \\&#10;h &=\frac{2 r_{e} G M_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}-r_{e} \\&#10;&=\frac{2 r_{e} G M_{e}-2 r_{e} G M_{e}+r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}} \\&#10;& h=\frac{r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}}

7 0
1 year ago
A book is pushed with an initial horizontal velocity of 5.0 meters per second off the top of a 1.19 meter high desk. How far awa
kipiarov [429]

Answer:

2.45 m

Explanation:

First of all, we have to calculate the time of flight of the book, by using the equation for the vertical motion:

h=\frac{1}{2}gt^2

where

h = 1.19 m is the vertical distance covered by the book

g = 9.8 m/s^2 is the acceleration of gravity

t is the time of flight

Solving for t,

t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(1.19)}{9.8}}=0.49 s

Now we can find the horizontal distance covered by the book, which is given by

d=v_x t

where

v_x = 5.0 m/s is the horizontal velocity

t = 0.49 s is the time of flight

Substituting,

d=(5.0)(0.49)=2.45 m

So the book lands 2.45 m away.

8 0
2 years ago
Two identical masses are connected to two different flywheels that are initially stationary. Flywheel A is larger and has more m
inysia [295]

Answer:

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

c) True. Information is missing to perform the calculation

Explanation:

Let's consider solving this exercise before seeing the final statements.

We use Newton's second law Rotational

      τ = I α

     T r = I α

     T gR = I α

     Alf = T R / I (1)

     T = α I / R

Now let's use Newton's second law in the mass that descends

     W- T = m a

     a = (m g -T) / m

The two accelerations need related

     a = R α

    α = a / R

    a = (m g - α I / R) / m

    R α = g - α I /m R

    α (R + I / mR) = g

    α = g / R (1 + I / mR²)

We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant

Let's review the claims

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

b) False. Missing data for calculation

c) True. Information is missing to perform the calculation

d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases

4 0
2 years ago
Other questions:
  • Anne releases a stone from a height of 2 meters. She measures the kinetic energy of the stone at 9.8 joules at the exact point i
    14·2 answers
  • Mike recently purchased an optical telescope. Identify the part of the electromagnetic spectrum that is closest to the frequency
    7·2 answers
  • Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor rad
    5·2 answers
  • A helicopter flies 250 km on a straight path in a direction 60° south of east. The east component of the helicopter’s displaceme
    7·2 answers
  • Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
    9·2 answers
  • An inductor is connected in series to a fully charged capacitor. Which of the following statements are true? Check all that appl
    14·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • A constant-velocity horizontal water jet from a stationary nozzle impinges normally on a vertical flat plate that rides on a nea
    10·1 answer
  • A jetboat is drifting with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m, end tex
    10·1 answer
  • Multiply the number 4.48E-8 by 5.2E-4 using Google. What is the correct answer in scientific notation?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!