Answer:
Answered
Explanation:
v= 1 m/s
A= 1 m^2
m= 100 kg
y= 1 mm
μ = ?
ζ= viscosity of SAE 20 crankcase oil of 15° C= 0.3075 N sec/m^2
forces acting on the block are
F_s ← ↓ →F_f
mg
N= mg
F_s= shear force = ζAv/y F_f= friction force = μN
now in x- direction F_s= F_f
ζAv/y = μN
0.3075×1×1×1/1×10^{-3} = μ×100
⇒μ=0.313 (coefficient of sliding friction for the block)
Now, as the velocity is increased shear force also increases and due to this frictional force also increases.
Now, to compensate this frictional force friction coefficient must increase
as v∝μ
Answer: 13.1° from the horizontal
Explanation: For projectile
Horizontal distance R of a projectile is:
R= U×Usin2x/g
Where U is the speed of projectile, x is angle of projectile and g= acceleration due to gravity=9.8m/s
R= 15×15sin(2×31)/9.8= 225sin(62)/9.8=20.27m
Therefore if R is halved.
R/2 = 20.27/2=10.14m
Hence the angle for this case is.
Making sin(2x) the subject of formula
Sin2x= Rg/U×U
R is now 10.14 in this case.
Sin2x= 10.14×9.8/15×15=0.4415
2x=arcsin0.4415=26.2
x= 26.2/2
x= 13.1°
Good luck...
<h2>Answer:</h2>
<u>A) Increase the voltage by adding a bigger battery </u>
<h2>Explanation:</h2>
According to Ohm's law
V = IR
where V is voltage, I is current and R is the resistance. If we write the equation for resistance we would get
R= V / I
Here we can see that Voltage is directly proportional to Resistance so in order to keep the balance if we increase the resistance then we must increase the voltage to keep the current constant.
The answer would be D. Eating nutrient-dense foods
A falling raindrop
Kinetic energy and potential energy are both applied when a body or object is falling.