Answer:
conserved
Explanation:
During this process the energy is conserved
<span>Hello!
We have the following data:
</span>
Time (T) = ? (in minutes)
Power (P) = 3 kW → 3000 W
Energy (E) = 9 MJ → 9000000 J or (W/s)
Formula of the consumption of electric energy:

Solving:




How many minutes can it run for? (<span>Let's convert in minutes)
</span>
1 minute --------- 60 seconds
y minute --------- 3000 seconds

<span>Product of extremes equals product of means
</span>




I hope this helps! =)
<span>
</span>
<span>Most objects tend to contain the same numbers of positive and negative charge because this is the most stable situation. In fact, if an object has an excess of positive charge, it tends to attract an equal number of negative charges to balance this effect and restore neutrality: the attracted negative charges combine with the excess of positive charges, leaving the object electrically neutral.</span>
The answer should be:
<span>To prevent collisions and violations at intersections that have traffic signals, use the d</span>elayed acceleration technique<span> to ensure the intersection is clear before you enter it.
Delayed acceleration technique refers to w</span><span>aiting to go through an intersection until you have a chance to scan for other vehicles.</span>
Answer:
Explanation:
Expression for escape velocity
ve = 
ve² R / 2 = GM
M is mass of the planet , R is radius of the planet .
At distance r >> R , potential energy of object
= 
Since the object is at rest at that point , kinetic energy will be zero .
Total mechanical energy =
+ 0 = 
Putting the value of GM = ve² R / 2
Total mechanical energy = ve² Rm / 2 r
This mechanical energy will be conserved while falling down on the earth due to law of conservation of mechanical energy . So at surface of the earth , total mechanical energy
= ve² Rm / 2 r