In order to answer this question ... strange as it may seem ...
we only need one of those measurements that you gave us
that describe the door.
The door is hanging on frictionless hinges, and there's a torque
being applied to it that's trying to close it. All we need to do is apply
an equal torque in the opposite direction, and the door doesn't move.
Obviously, in order for our force to have the most effect, we want
to hold the door at the outer edge, farthest from the hinges. That
distance from the hinges is the width of the door ... 0.89 m.
We need to come up with 4.9 N-m of torque,
applied against the mechanical door-closer.
Torque is (force) x (distance from the hinge).
4.9 N-m = (force) x (0.89 m)
Divide each side by 0.89m: Force = (4.9 N-m) / (0.89 m)
= 5.506 N .
Answer:
The starting position of the runner.
Explanation:
When you look at the graph, you can see that the first point on the graph is twenty on the y-axis.
The runner starts at twenty, and ends at thirty.
Therefore, the runner starts at twenty on the y-axis, so it's the starting position of the runner.
Answer:
circuit sketched in first attached image.
Second attached image is for calculating the equivalent output resistance
Explanation:
For calculating the output voltage with regarding the first image.

![Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V](https://tex.z-dn.net/?f=Vout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5B%2F%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DVout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5C%5CVout%20%3D%205%20%5Cfrac%7B2%7D%7B5%7D%20%3D%202%20V)
For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.
so.

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.
if the -5% is applied to both resistors the Voltage is still 5V because the quotient has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:




so.

Answer:
The formula to calculate velocity in this case:
v = v0 + at
=> a = (v - v0)/t
= (50 - 0)/4
= 50/4 = 12.5 (m/s2)
Hope this helps!
:)
Answer:

Explanation:
given data
density of current sheet = 0.40 A/m
length a = 0.27 m
width b = 0.63 m
For infinite sheet, magnetic field is given as

magnetic flux is given as



