Force = mass * acceleration
10 N - 2 N = 20 kg * acceleration
8 N = 20 kg * acceleration
8 / 20 = acceleration
2/5 m/s^2 = acceleration
Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
Answer:
B. 4 m/s
Explanation:
v=d/t
Running for 300 m at 3 m/s takes 100 seconds and running at 300 m at 6 m/s takes 50 seconds. 100 s + 50 s = 150 s (total time). Total distance is 600 m, so 600 m/ 150 s = 4 m/s.
Answer:
a) 0.0625 I_1
b) 3.16 m
Explanation:
<u>Concepts and Principles </u>
The intensity at a distance r from a point source that emits waves of power P is given as:
I=P/4π*r^2 (1)
<u>Given Data</u>
f (frequency of the tuning fork) = 250 Hz
I_1 is the intensity at the source a distance r_1 = I m from the source.
<u>Required Data</u>
- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.
- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.
<u>solution:</u>
(a)
According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:
I∝1/r^2
Set the proportionality:
I_1/I_2=(r_2/r_1)^2 (2)
Solve for I_2 :
I_2=I_1(r_2/r_1)^2
I_2=0.0625 I_1
(b)
Solve Equation (2) for r_2:
r_2=(√I_1/I_2)*r_1
where I_2 = (1/10)*I_1:
r_2=(√I_1/1/10*I_1)*r_1
=3.16 m
Answer:
8.67807 N
34.7123 N
Explanation:
m = Mass of shark = 92 kg
= Density of seawater = 1030 kg/m³
= Density of freshwater = 1000 kg/m³
= Density of shark = 1040 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Net force on the fin is (seawater)

The lift force required in seawater is 8.67807 N
Net force on the fin is (freshwater)

The lift force required in a river is 34.7123 N