To answer this question, we must bear in mind the following considerations that are mentioned in the statement:
The cannon balls are identical and shoot with the same force
The force acting on the cannonball increases with the length of the hole.
You want to know which cannon will have the least momentum on the ball.
Then, the force on the ball increases as the barrel length increases and the impulse depends on the magnitude of the force, then, the cannon that will have the minimum impulse will be the 1 meter one.
The answer is option B.
Answer:
Time period of the motion will remain the same while the amplitude of the motion will change
Explanation:
As we know that time period of oscillation of spring block system is given as

now we know that
M = mass of the object
k = spring constant
So here we know that the time period is independent of the gravity
while the maximum displacement of the spring from its mean position will depends on the gravity as


so we can say that
Time period of the motion will remain the same while the amplitude of the motion will change
Answer:
Reproducibility of research
Explanation:
The principle of science that explains why similar experimental investigations conducted in different parts of the world could result in the same outcome is referred to as reproducibility.
<em>A good research or experiment in science must be reproducible, otherwise, the outcome of such an experiment might become inadmissible within the scientific community. It is a core principle of the scientific method that similar results should be obtained when an experiment or observational study conducted in one place is repeated in another place with the same procedure. Hence, an experiment must be reproducible in science in order for the outcome of such an experiment to be part of the general scientific knowledge. </em>
Explanation:
Whole system will accelerate under the action of applied force. The box will experience the force against the friction and when this force exceeds then the box will move. so
Ff = μs×m1×g
m1×a = μs×m1×g
a = μs×g
The applied force is given by
F = (m1 + m2)×a so
F = μs×g×(m1+m2)
3 trams must be added
Explanation:
In this problem, there are 12 trams along the ring road, spaced at regular intervals.
Calling L the length of the ring road, this means that the space between two consecutive trams is
(1)
In this problem, we want to add n trams such that the interval between the trams will decrease by 1/5; therefore the distance will become

And the number of trams will become

So eq.(1) will become
(2)
And substituting eq.(1) into eq.(2), we find:

Learn more about distance and speed:
brainly.com/question/8893949
#LearnwithBrainly