Answer:
When a an object is been rotated its resistance capacity to that rotational force is know as rotational inertia and this mathematically given as

Where m is the mass
r is the rotation radius
For the spinning of the lamp as a baton to work the location of the center of mass of the floor lamp needs to be located
This is more likely to be located closer to base of the lamp as compared to the top, so success of spinning a floor lamp like a baton is highly likely if the lamp is grabbed closer to the base because that is where the position of its center of mass is likely to be.
Explanation:
Answer:
(a) x=ASin(ωt+Ф₀)=±(√3)A/2
(b) x=±(√2)A/2
Explanation:
For part (a)
V=AωCos(ωt+Ф₀)⇒±0.5Aω=AωCos(ωt+Ф₀)
Cos(ωt+Ф₀)=±0.5⇒ωt+Ф₀=π/3,2π/3,4π/3,5π/3
x=ASin(ωt+Ф₀)=±(√3)A/2
For part(b)
U=0.5E and U+K=E→K=0.5E
E=K(Max)
(1/2)mv²=(0.5)(1/2)m(Vmax)²
V=±(√2)Vmax/2→ωt+Ф₀=π/4,3π/4,7π/4
x=±(√2)A/2
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time
The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.
Distance = 10 * 1.06
Distance = 10.6 meters
The boat should be 10.6 meters away horizontally from the point of release.
Answer:
a = 0.5 m/s²
Explanation:
Applying the definition of angular acceleration, as the rate of change of the angular acceleration, and as the seats begin from rest, we can get the value of the angular acceleration, as follows:
ωf = ω₀ + α*t
⇒ ωf = α*t ⇒ α =
= 
The angular velocity, and the linear speed, are related by the following expression:
v = ω*r
Applying the definition of linear acceleration (tangential acceleration in this case) and angular acceleration, we can find a similar relationship between the tangential and angular acceleration, as follows:
a = α*r⇒ a = 0.067 rad/sec²*7.5 m = 0.5 m/s²
Answer:
zero or 2π is maximum
Explanation:
Sine waves can be written
x₁ = A sin (kx -wt + φ₁)
x₂ = A sin (kx- wt + φ₂)
When the wave travels in the same direction
Xt = x₁ + x₂
Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]
We are going to develop trigonometric functions, let's call
a = kx + wt
Xt = A [sin (a + φ₁) + sin (a + φ₂)
We develop breasts of double angles
sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a
sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a
Let's make the sum
sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)
to have a maximum of the sine function, the cosine of fi must be maximum
cos φ₁ + cos φ₂ = 1 +1 = 2
the possible values of each phase are
φ1 = 0, π, 2π
φ2 = 0, π, 2π,
so that the phase difference of being zero or 2π is maximum