Answer:
The question has some details missing, here is the complete question ; A -3.0 nC point charge is at the origin, and a second -5.0nC point charge is on the x-axis at x = 0.800 m. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 m.
Explanation:
The application of coulonb's law is used to approach the question as shown in the attached file.
Answer:
The young tree, originally bent, has been brought into the vertical position by adjusting the three guy-wire tensions to AB = 7 lb, AC = 8 lb, and AD = 10 lb. Determine the force and moment reactions at the trunk base point O. Neglect the weight of the tree.
C and D are 3.1' from the y axis B and C are 5.4' away from the x axis and A has a height of 5.2'
Explanation:
See attached picture.
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.

Then, while the car is traveling down the track it loses some of its initial energy due to friction:

So, we know that the car is approaching the point B with the following amount of energy:

The law of conservation of energy tells us that this energy must the same as the energy at point B.
The energy at point B is the sum of car's kinetic and potential energy:

As said before this energy must be the same as the energy of a car approaching the loop:

Now we solve the equation for

:
Answer:
6 s
Explanation:
given,
Sports car accelerate from 0 to 30 mph in 1.5 s
time taken to accelerate 0 to 60 mph = ?
The power of the engine is independent of velocity and neglecting friction
power =
P = constant
the kinetic energy for 60 mph larger than this of 30 mph
= 
= 
= 
= 4
gain in kinetic energy = P x t
time = 4 x 1.5
= 6 s
Answer:
The heat transferred from water to skin is 6913.5 J.
Explanation:
Given that,
Weight of water = 25.0 g
Suppose that water and steam, initially at 100°C, are cooled down to skin temperature, 34°C, when they come in contact with your skin. Assume that the steam condenses extremely fast. We will further assume a constant specific heat capacity c=4190 J/(kg°K) for both liquid water and steam.
We need to calculate the heat transferred from water to skin
Using formula for stream

Put the value into the formula


Hence, The heat transferred from water to skin is 6913.5 J.