answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
2 years ago
11

A student attaches a block to a vertical spring so that the block-spring system will oscillate if the block-spring system is rel

eased from rest at a vertical position that is not the system’s equilibrium position. The system oscillates near Earth’s surface. The system is then taken to the Moon’s surface, where the gravitational field strength is nearly 16 that of the gravitational field strength near Earth's surface. Which of the following claims is correct about the period of oscillation for the system?
Physics
1 answer:
vodka [1.7K]2 years ago
4 0

Answer:

Time period of the motion will remain the same while the amplitude of the motion will change

Explanation:

As we know that time period of oscillation of spring block system is given as

T= 2\pi\sqrt{\frac{M}{k}}

now we know that

M = mass of the object

k = spring constant

So here we know that the time period is independent of the gravity

while the maximum displacement of the spring from its mean position will depends on the gravity as

mg = kx

x = \frac{mg}{k}

so we can say that

Time period of the motion will remain the same while the amplitude of the motion will change

You might be interested in
The chart shows data for four moving objects. A 4 column table with 4 rows. The first column is labeled Object with entries, W,
KatRina [158]

Answer:

y

Explanation:

I took the test

3 0
1 year ago
Three arrows are shot horizontally. They have left the bow and are traveling parallel to the ground. Air resistance is negligibl
timurjin [86]

Answer:

F₁ = F₂ = F₃ = 0 N

Explanation:

given,

Arrow 1 mass = 80 g   speed = 10 m/s

Arrow 2 mass = 80 g   speed = 9 m/s

Arrow 3 mass = 90 g   speed = 9 m/s

Horizontal Force:- F₁ , F₂ and F₃

There is no air resistance.

If Air resistance is zero then the horizontal acceleration of the arrow also equal to zero.

We know,

According to newton's second law

        F = m a

If Acceleration is equal to zero

Then Force is also equal to zero.

Hence, F₁ = F₂ = F₃ = 0 N

4 0
2 years ago
Susie walks 3 blocks north to the local CVS store, then 4 blocks east to her grandmother’s house. She then walks 2 blocks west a
Slav-nsk [51]

Answer:

Suzie is 3 blocks north of where she started

Explanation:

Displacement is the minimum distance between the initial and final point of motion.

Here, Suzie first walks 3 blocks north. From there she walks 4 blocks east. Then 2 blocks to the east then 2 blocks north and then 2 blocks east. She covered 4 blocks east toward west. This is the same distance she covered traveling east. But she is 2 blocks north. From there she traveled a block south to the pizzeria and another block to her friends house. She covered the two block she had traveled north.

Hence, Suzie is 3 blocks north of where she started.

7 0
1 year ago
A sprinter accelerates from rest to a velocity of 12m/s in the first 6 seconds of the 100 meter dash .
GREYUIT [131]

Answer:

a) 36 m

b) 64 m

Explanation:

Given:

v₀ = 0 m/2

v = 12 m/s

t = 6 s

Find: Δx

Δx = ½ (v + v₀) t

Δx = ½ (12 m/s + 0 m/s) (6 s)

Δx = 36 m

The track is 100 m, so the sprinter still has to run another 64 m.

5 0
2 years ago
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don't have time t
sammy [17]

Complete Question

If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).

Answer:

The pressure at the brain is P_b  = 89.872 \ mm \ of \ Hg

Explanation:

Generally is mathematically denoted as

                  P = \rho gh

Substituting 1025 kg/m^3 for \rho(the  density) , 9.8 m/s^2 for g (acceleration due to gravity) , 0.4m for h (the height )

We have that the pressure difference between the heart and the brain is

              P = 1025 * 9.8 *0.4

                  = 4018 N/m^2

But the pressure of blood at the heart is given as

               P_h=120 mm of Hg = 120 * 133 =  1.59*10^3Pa

Now the pressure at the brain is mathematically evaluated as

                 P_b = P_h - P

                     = 1.596*10^4 - 4018

                     = 11982 N/m^2

                      P_b= \frac{11982}{133} = 89.872 \ mm \ of \ Hg

   

     

3 0
2 years ago
Other questions:
  • Baseballs pitched by a machine have a horizontal velocity of 30 meters/second. The machine accelerates the baseball from 0 meter
    9·1 answer
  • Lorenzo is making a prediction. “I learned that nonmetals increase in reactivity when moving from left to right. So I predict th
    12·2 answers
  • A spring stretches 0.220 m when a 0.400 kg-mass is hung from it. What is its spring constant? (Mass is not a force )
    5·2 answers
  • (Another tomato/skyscraper problem.) You are looking out your window in a skyscraper, and again your window is at a height of 45
    6·1 answer
  • A plane wall with constant properties is initially at a uniform temperature To. Suddenly, the surface at x = L is exposed to a c
    12·1 answer
  • Which of the following best describes a set of conditions under which archaeoastronomers would conclude that an ancient structur
    13·1 answer
  • How does the sun transfer energy to Earth?
    12·2 answers
  • Unit of work is derived unit why​
    7·1 answer
  • A small mass m is tied to a string of length L and is whirled in vertical circular motion. The speed of the mass v is such that
    9·1 answer
  • Researchers interested in studying stress gave 150 high school seniors a very difficult math exam. After the test, the researche
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!