answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
1 year ago
7

Like all planets, the planet Venus orbits the Sun in periodic motion and simultaneously spins about its axis. Just as on Earth,

the time to make one complete orbit (i.e., the period of orbit) is what defines a year. And the time to make one complete revolution about its axis (i.e., the period of rotation) is what defines a day. The period of orbit for the Earth is 365.25 days and the period of rotation is 24 hours (1.00 day). But when these same values for Venus are expressed relative to Earth, it is found that Venus has a period of orbit of 225 days and a period of rotation of 243 days. So for Venus inhabitants, a day would last longer than a year! Determine the frequency of orbit and the frequency of rotation (in Hertz) on Venus. Ans: A marine weather station detects waves which are 9.28 meters long and 1.65 meters high and travel a distance of 50.0 meters in 21.8 seconds. Determine the speed and the frequency of these waves. Ans:
Physics
1 answer:
Liono4ka [1.6K]1 year ago
7 0

Answer:

a) F = 5.14 10⁻⁸ Hz,  f = 4.76 10-8 Hz,  b)   v = 2.29 m / s,   f = 42.5 Hz

Explanation:

a)This problem has two parts.

For the calculations relative to the planet Venus, we use that the period and the frequency are related

            f = 1 / T

frequency of the orbit around the Sun

   

Let's reduce the period to the SI system

           T = 225 days (24h / 1days) (3600 s / 1h) = 1.94 10⁷ s

           F = 1 / 1.94 10⁷

           F = 5.14 10⁻⁸ Hz

rotation frequency

            T = 243 d = 2.1 107 s

             f = 1 / T

             f = 1 / 2.1 107

            f = 4.76 10-8 Hz

b) give the data of some marine waves

the speed of the wave can be found with kinematics

            v = x / t

            v = 50.0 / 21.8

            v = 2.29 m / s

If the wavelength is L = 9.28m

this distance is the distance between two consecutive ridges or valleys

             λ / 2 = L

             λ = 2L

             λ = 2 9.28

             λ = 18.56 m

the speed of the wave is

             v = λ f

             f = v /λ

             f = 2.29 / 18.56

             f = 42.5 Hz

You might be interested in
Two point charges of values +3.4 and +6.6 μc are separated by 0.10 m. what is the electrical potential at the point midway betwe
12345 [234]

 To solve this problem, we should remember that:

Energy = Force x Distance

Since we are talking about charges, therefore we make use of Coulumb’s law for the electrical force between the two charges:

F = k q1 q2 / d^2

Where,

k = Coulumb’s constant = 9 x 10^9 N m^2/ c^2

q = charge

d = distance between the charges

Plugging back into the energy equation:

E = (k q1 q2 / d^2) * d

E = k q1 q2 / d

Solving for E using the given values:

E = (9 x 10^9 N m^2/ c^2) (3.4 E -6 c) (6.6 E -6 c) / 0.10 m

<span>E = 2.02 N m = 2.02 J</span>

4 0
2 years ago
A boy is pulling a load of 150N with a string inclined at an angle 30 to the horizontal if the tension of string is 105N the for
Lorico [155]

The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>

Why?

Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.

We can calculate the vertical force using the following formula:

VerticalForce=Force*Sin(30\° )=(BoysForce-StringForce)*\frac{1}{2}\\\\VerticalForce=(150N-105N)*\frac{1}{2}=VerticalForce=45N*\frac{1}{2}=22.5N

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>

Have a nice day!

8 0
2 years ago
Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
Dafna11 [192]

Answer:

720 J

Explanation:

The gravitational potential energy that Essam loses for every metre is given by:

\Delta U=mg \Delta h

where

m=72 kg is Essam's mass

g=10 N/kg is the gravitational field strength

\Delta h=1 m is the difference in height

By substituting the numbers into the formula, we find

\Delta U=(72 kg)(10 N/kg)(1 m)=720 J

5 0
2 years ago
Read 2 more answers
A spaceship is travelling at 20,000.0 m/s. After 5.0 seconds, the rocket thrusters are turned on. At the 55.0 second mark, the s
tankabanditka [31]

Answer:

80 m/s^2

Explanation:

The acceleration of an object is given by:

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time interval it takes for the velocity to change from u to v

For the rocket in this problem,

u = 20,000 m/s

v = 24,000 m/s

t = 55.0 - 5.0 = 50.0 s

Substituting,

a=\frac{24000-20000}{50}=80 m/s^2

7 0
2 years ago
Which title best reflects the main idea of the passage? The Role of Convection in the Distribution of Earth's Energy The Role of
Leto [7]

Answer:

The Role of Heat Transfer Methods in the Distribution of Earth's Energy

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • Jaiden is writing a report about the structure of the atom. In her report, she says that the atom has three main parts and two s
    9·2 answers
  • An airplane is traveling due east with a velocity of 7.5 × 102 kilometers/hour. There is a tailwind of 30 kilometers/hour. What
    15·2 answers
  • A room with dimensions 7.00m×8.00m×2.50m is to be filled with pure oxygen at 22.0∘C and 1.00 atm. The molar mass of oxygen is 32
    7·1 answer
  • The temperature of a system drops by 30°F during a cooling process. Express this drop in temperature in K, R, and °C.
    14·1 answer
  • 1) A star burst can be defined as stars formed from recycled dead star materials.
    10·1 answer
  • A horizontal uniform meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging from it at the 20-cm mark and a 0.30
    8·2 answers
  • Suzy drops a rock from the roof of her house. Mary sees the rock pass her 2.9 m tall window in 0.134 sec. From how high above th
    7·1 answer
  • Two leopards are fighting over a piece of meat they caught while hunting. The leopards pull on the meat muscle with a force of 1
    5·1 answer
  • Why is nuclear energy an important discussion in today's world?
    8·1 answer
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!