answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
1 year ago
12

In the system shown above, the pulley is a uniform disk with a mass of .75 kg and a radius of 6.5 cm. The coefficient of frictio

n between the 5.8 kg mass and the horizontal surface is .25, and the ropes does not slip on the pulley. They system is released from rest. Use work-energy principles to determine the kinetic energy of the (a) 2.8 kg mass and (b) the pulley after the 5.8 kg mass has moved 2.2 meters.

Physics
1 answer:
lord [1]1 year ago
5 0

Answer:

i am answering the same question 3rd time

please find the answer in the images attached.

You might be interested in
The drawing shows a person (weight W = 588 N, L1 = 0.838 m, L2 = 0.398 m) doing push-ups. Find the normal force exerted by the f
zhenek [66]

Complete Question

The complete question is shown on the first uploaded image

Answer:

Force on each hand is 196.22 N

Force on each foot is 95.8 N

Explanation:

In order to get a better understanding of this question let us explain some concepts

Normal Force:

We can define normal force Fn as that type of force which makes a 90 degree angle with the surface on which it is exerted.

Torque:

We can define torque as the moment of forces that tends to produce or cause rotation

From the question we are given that

Weight of body is (W) = 584 N

The normal force on both hands (Ha) = ?

The normal force on both legs (Lg) = ?

Looking at the diagram the person is at equilibrium so

                 584 = Ha + Lg

an also this mean that torques acting on the body is balanced

         So,   0.410 Ha  = 0.840 Lg

    Making Lg the subject of formula in the equation above we

   Lg = 0.4881 Ha

 Considering the first equation and replacing Lg with this recent equation we have

                      584 = Ha + 0.4881 Ha

          Therefore Ha = 392.44 N

This value obtained is  for both hands for each hand we divide by 2

Therefore we have for each hand = 392.44/2 =196.55 N

Since we have been able to get the force on both hands we can substitute it in to the equation where we made Lg the subject of formula and we have

             Lg = 0.4881 ×  392.44

                  = 191.22 N

The value above is the force on both legs to obtain the force on each leg we have

                  191.22/2 = 95.8 N.

8 0
2 years ago
13. An aircraft heads North at 320 km/h rel:
AURORKA [14]

The velocity of the aircraft relative to the ground is 240 km/h North

Explanation:

We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.

Mathematically:

v' = v + v_a

where

v' is the velocity of the aircraft relative to the ground

v is the velocity of the aircraft relative to the air

v_a is the velocity of the air relative to the ground.

Taking north as positive direction, we have:

v = +320 km/h

v_a = -80 km/h (since the air is moving from North)

Therefore, we find

v'=+320 + (-80) = +240 km/h (north)

Learn more about vector addition:

brainly.com/question/4945130

brainly.com/question/5892298

#LearnwithBrainly

7 0
2 years ago
he first excited state of the helium atom lies at an energy 19.82 eV above the ground state. If this excited state is three-fold
bekas [8.4K]

Answer:

Relative population is  2.94 x 10⁻¹⁰.

Explanation:

Let N₁ and N₂ be the number of atoms at ground and first excited state of helium respectively and E₁ and E₂ be the ground and first excited state energy of helium respectively.

The ratio of population of atoms as a function of energy and temperature is known as Boltzmann Equation. The equation is:

\frac{N_{1} }{N_{2} } =  \frac{g_{1}e^{\frac{-E_{1} }{KT} }  }{g_{2}e^{\frac{-E_{2} }{KT} }}

\frac{N_{1} }{N_{2} } = \frac{g_{1}e^{\frac{-(E_{1}-E_{2})  }{KT} }  }{g_{2}}

Here g₁ and g₂ be the degeneracy at two levels, K is Boltzmann constant and T is equilibrium temperature.

Put 1 for g₁, 3 for g₂, -19.82 ev for (E₁ - E₂) and 8.6x10⁵ ev/K for K and 10000 k for T in the above equation.

\frac{N_{1} }{N_{2} } = \frac{1\times e^{\frac{-(-19.82)}{8.6\times 10^{-5}\times 10000} }  }{3}

\frac{N_{1} }{N_{2} } = 3.4 x 10⁹

\frac{N_{2} }{N_{1} } =  2.94 x 10⁻¹⁰

5 0
2 years ago
80 foot-pounds of work is needed to move the sofa in Tyler's apartment. Which of the following statements is true?
erastova [34]
D is the correct answer
hop it helped.
3 0
2 years ago
Two astronauts on opposite ends of a spaceship are comparing lunches. One has an apple, the other has an orange. They decide to
german

Answer: v= 1.23 m/s θ = 75.3º

Explanation:

First of all, we define the direction in which both fruits are tossed as the x axis, so all initial momenta have horizontal components only.

Now, if no external forces act during collision (due to the infinitesimal time during which collision takes place) momentum must be conserved.

As momentum is a vector, both components must be conserved, so we can write the following equations:

p₁ₓ = p₂ₓ ⇒ -m₁ . vi₁ +m₂. vi₂ = m₁ . vf₁ . cos θ  (1)

p₁y = p₂y ⇒ 0 =m₂ . vf₂ - m₁. vf₁. sin θ (2)

Replacing by the values of m1, m₂, vi₁, vi₂, and vf₂, we can calculate the value of the angle θ, that the apple forms with the horizontal, as follows:

(1) -0.13 Kg. 1.05 m/s + 0.15 Kg. 1.18 m/s = 0.13. vf . cos θ  

(2) 0.15 Kg. 1.03 m/s = 0.13 vf. sin θ

sin θ / cos θ = 3.82 ⇒ tg θ = 3.82 ⇒ θ = arc tg (3.82) = 75.3º

Replacing this value of θ in (2), we get:

0.15 kg. 1.03 m/s = 0.13 vf . sin 75.3º = 0.13 . vf . 0.967

Solving for vf, we get:

vf = 0.15 kg. 1.03 m/s / 0.13. 0.967 = 1.23 m/s

5 0
1 year ago
Other questions:
  • List some reasons why growth characteristics are more useful on agar plates than on agar slants
    9·2 answers
  • When a light wave enters into a medium of different optical density,
    6·1 answer
  • At the instant a ball is thrown horizontally with a large force, an identical ball is dropped from the same height. which ball h
    10·2 answers
  • A box is at rest on a ramp at an incline of 22°. The normal force on the box is 538 N.
    14·2 answers
  • A uniform rectangular plate is hanging vertically downward from a hinge that passes along its left edge. By blowing air at 11.0
    9·1 answer
  • A package is dropped from a helicopter that is descending steadily at a speed v0. After t seconds have elapsed, consider the fol
    13·2 answers
  • A (1.25+A) kg bowling ball is hung on a (2.50+B) m long rope. It is then pulled back until the rope makes an angle of (12.0+C)o
    13·1 answer
  • 1) A star burst can be defined as stars formed from recycled dead star materials.
    10·1 answer
  • Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C wit
    15·1 answer
  • Carla sees an equation that models a nuclear change.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!