When an airplane is flying straight and level at a constant speed, the lift it produces balances its weight, and the thrust it produces balances its drag. However, this balance of forces changes as the airplane rises and descends, as it speeds up and slows down, and as it turns.
Answer: 14.52*10^6 m/s
Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.
the change in potential energy for the electron; e*ΔV is equal to energy kinetic gained for the electron so:
e*ΔV=1/2*m*v^2 v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s
Ans: Dilute the solution
Explanation:
To decrease the over-saturation, dilute the solution. Dilution<span> is the process of decreasing the solute's concentration in the </span>solution. It is<span> usually done by mixing with more solvent. In other words, to </span>dilute<span> a </span>solution<span> means to add more solvent without the addition of more solute.</span>
In a series circuit . . .
-- The total resistance is the sum of the individual resistors.
-- The current is the same at every point in the circuit.
The total resistance in this circuit is (3Ω + 6Ω ) = 9Ω
The current at every point is (V/R) = (12v / 9Ω ) = <em>1.33 A</em> .
Pick choice<em> (a)</em>.
Answer:
= 1,386 m / s
Explanation:
Rocket propulsion is a moment process that described by the expression
- v₀ =
ln (M₀ / Mf)
Where v are the velocities, final, initial and relative and M the masses
The data they give are the relative velocity (see = 2000 m / s) and the initial mass the mass of the loaded rocket (M₀ = 5Mf)
We consider that the rocket starts from rest (v₀ = 0)
At the time of burning half of the fuel the mass ratio is that the current mass is
M = 2.5 Mf
- 0 = 2000 ln (5Mf / 2.5 Mf) = 2000 ln 2
= 1,386 m / s