In this system we have the conservation of angular momentum: L₁ = L₂
We can write L = m·r²·ω
Therefore, we will have:
m₁ · r₁² · ω₁ = m₂ · r₂² · ω₂
The mass stays constant, therefore it cancels out, and we can solve for ω<span>₂:
</span>ω₂ = (r₁/ r₂)² · ω<span>₁
Since we know that r</span>₁ = 4r<span>₂, we get:
</span>ω₂ = (4)² · ω<span>₁
= 16 </span>· ω<span>₁
Hence, the protostar will be rotating 16 </span><span>times faster.</span>
Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m

1. Finding Ф from the initial conditions:

2. Finding time t at position y = 1 cm:

3. Find velocity v at time t from equation 2:

First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>
Answer:small barrel gun
Explanation:
Given
Muzzle velocity of bullet is greater in short barrel gun as compared to larger barrel gun
acceleration is given by change in velocity with respect to time

In case of short barrel bullet time taken by bullet to reach its muzzle velocity is less therefore acceleration of small barrel bullet is more compared to long barrel bullet.
This question was apprently selected from the "Sneaky Questions" category.
The store is 3 km from his home, and he walks there with a speed of 6 km/hr. So it takes him (3 km) / (6 km/hr) = 1/2 hour to get to the store.
That's 30 minutes. So the whole part-(a.) of the question refers to only that part of the trip, and we don't care what happens once he reaches the store.
a). Over the first 30 minutes of his travel, Greg walks 3.0 km on a straight road, and he ends up 3.0 km away from where he started.
Average speed = (distance/time) = (3.0 km) / (1/2 hour) = <em>6.0 km/hr</em>
Average velocity = (displacement/time) = (3.0 km) / (1/2 hour) = <em>6.0 km/hr</em>
There's probably some more questions in part-(b.) where you'd need to use Greg's return trip to find the answers, but johnaddy210 is only asking us for part-(a.).