answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatuchka [14]
2 years ago
12

Which of the following statements about electric field lines associated with electric charges is false? Electric field lines can

be either straight or curved. Electric field lines can form closed loops. Electric field lines begin on positive chares and end on negative charges. Electric field lines can never intersect with one another.
Physics
1 answer:
Tcecarenko [31]2 years ago
8 0

Answer:

The false statement is 'Electric field lines form closed loops'.

Explanation:

  • Electric field lines originate from positive end and terminates at negative end,i.e., field lines are inward in direction to the negative charges and outward from the positive charges.
  • These lines when close together represents high intensity and when far apart shows low intensity of the field.
  • These lines do not intersect, as the tangent drawn on these lines provides us with the field direction and intersection of these lines means two field directions which is not possible.
  • These lines unlike magnetic field lines do not form closed loops as they do not turn around but originate at positive end and terminates at negative end which ensures no loop formation.
You might be interested in
A block moves at 5 m/s in the positive x direction and hits an identical block, initially at rest. A small amount of gunpowder h
Anestetic [448]

Answer:

Speed of 1.83 m/s and 6.83 m/s

Explanation:

From the principle of conservation of momentum

mv_o=m(v_1 + v_2) where m is the mass, v_o is the initial speed before impact, v_1 and v_2 are velocity of the impacting object after collision and velocity after impact of the originally constant object

5m=m(v_1 +v_2)

Therefore v_1+v_2=5

After collision, kinetic energy doubles hence

2m*(0.5mv_o)=0.5m(v_1^{2}+v_2^{2})

2v_o^{2}=v_1^{2} + v_2^{2}

Substituting 5 m/s for v_o then

2*(5^{2})= v_1^{2} + v_2^{2}

50= v_1^{2} + v_2^{2}

Also, it’s known that v_1+v_2=5 hence v_1=5-v_2

50=(5-v_2)^{2}+ v_2^{2}

50=25+v_2^{2}-10v_2+v_2^{2}

2v_2^{2}-10v_2-25=0

Solving the equation using quadratic formula where a=2, b=-10 and c=-25 then v_2=6.83 m/s

Substituting, v_1=-1.83 m/s

Therefore, the blocks move at a speed of 1.83 m/s and 6.83 m/s

6 0
1 year ago
A mass of 0.4 kg hangs motionless from a vertical spring whose length is 0.76 m and whose unstretched length is 0.41 m. Next the
Blizzard [7]
<h3><u>Answer;</u></h3>

= 1.256 m

<h3><u>Explanation;</u></h3>

We can start by finding the spring constant  

F = k*y  

Therefore;  k = F/y = m*g/y

                               = 0.40kg*9.8m/s^2/(0.76 - 0.41)

                               = 11.2 N/m  

Energy is conserved  

Let A be the maximum displacement  

Therefore;  1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2  

Thus;  A = sqrt((1.20 - 0.55)^2 + m/k*v^2)

               = sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)

                = 0.846 m  

Thus; the length will be 0.41 + 0.846  = 1.256 m

6 0
2 years ago
Mickey, a daredevil mouse of mass m , m, is attempting to become the world's first "mouse cannonball." He is loaded into a sprin
Sati [7]

Answer:

  h = v₀² / 2g ,      h = k/4g     x²

Explanation:

In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches

Starting point. Lower compressed spring

              Em₀ = K = ½ m v²

Final point. Highest on the path

             Em_{f} = U = mg h

             

As or no friction the energy is conserved  

              Em₀ =  Em_{f}

              ½ m v₀²² = m g h

             h = v₀² / 2g

We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse

                  ½ k x² = 2 g h

                  h = k/4g     x²

8 0
2 years ago
Read 2 more answers
Before a collision, the x-momentum of an object is 8.0 × 103 kilogram meters/second, and its y-momentum is 1.2 × 104 kilogram me
Georgia [21]
Physics
What is the momentum of a 1.5 × 103 kilogram van that is moving at a velocity of 32 meters/second? A. 46.9 kilogram meters/second B. 4.7 × 103 kilogram meters/second C. 4.85 × 102 kilogram meters/second D. 4.85 × 104 kilogram meters/second
6 0
2 years ago
Read 2 more answers
Help ASAP). Draw additional masses to show how the block can be made to move toward point A. Be sure to draw the string and labe
chubhunter [2.5K]

Answer:

Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.

4 0
1 year ago
Other questions:
  • What is a disadvantage of using moving water to produce electricity
    14·1 answer
  • Which elements do hydrogen fuel cells combine to produce electricity? hydrogen and oxygen hydrogen and carbon hydrogen, oxygen,
    6·2 answers
  • What is the value of the composite constant (gmer2e), to be multiplied by the mass of the object mo in the equation above? expre
    9·2 answers
  • Takumi works in his yard for 45 minutes each Saturday. He works in the morning, and he wears sunscreen and a hat each time he wo
    12·2 answers
  • A single slit forms a diffraction pattern, with the first minimum at an angle of 40.0° from central maximum, when monochromatic
    8·1 answer
  • The velocity of a 3.00 kg parti- cle is given by :v = (8.00tiˆ + 3.00t2jˆ) m/s, with time t in seconds. At the instant the net f
    9·1 answer
  • A proton is released such that it has an initial speed of 4.0 · 105 m/s from left to right across the page. A magnetic field of
    15·1 answer
  • For a short time the position of a roller-coaster car along its path is defined by the equations r=25 m, θ=(0.3t) rad, and z=(−8
    14·1 answer
  • The dwarf planet praamzius is estimated to have a diameter of about 300km and orbits the sun at a distance of 6.4E12m . What is
    8·1 answer
  • A magnetic dipole with a dipole moment of magnitude 0.0243 J/T is released from rest in a uniform magnetic field of magnitude 57
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!