answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
2 years ago
12

Takumi works in his yard for 45 minutes each Saturday. He works in the morning, and he wears sunscreen and a hat each time he wo

rks in the yard.
What does Takumi hope to reduce through his actions?

the likelihood of stochastic effects, such as DNA mutations
the severity of stochastic effects, such as cancer
the severity of non-stochastic effects, such as cancer
the likelihood of non-stochastic effects, such as radiation sickness
Physics
2 answers:
MrRa [10]2 years ago
7 0

Explanation :

Takumi wears sunscreen and a hat each time he works in the yard. This is to protect himself with the strong radiation coming from the sun. UV rays that are coming from the sun are the main cause of skin cancer.

Stochastic effects are the effects that are caused by chance. Cancer is one of the main stochastic effects.

So, the correct option is (b) "the severity of stochastic effects, such as cancer".

givi [52]2 years ago
5 0

Answer:its A

Explanation:

i took the test

You might be interested in
What are the magnitude and direction of the force the pitcher exerts on the ball? (enter your magnitude to at least one decimal
murzikaleks [220]
Details are missing in the question. Complete text of the problem:

"The gravitational force exerted on a baseball is 2.28 N down. A pitcher throws the ball horizontally with velocity 16.5 m/s by uniformly accelerating it along a straight horizontal line for a time interval of 181 ms. The ball starts from rest.

(a) Through what distance does it move before its release? (m)
(b) What are the magnitude and direction of the force the pitcher exerts on the ball? (Enter your magnitude to at least one decimal place.)"


Solution

(a) The pitcher accelerates the baseball from rest to a final velocity of v_f = 16.5 m/s, so \Delta v=16.5 m/s, in a time interval of \Delta t = 181 ms=0.181 s. The acceleration of the ball in the horizontal direction (x-axis) is therefore

a_x =  \frac{\Delta v}{\Delta t}= \frac{16.5 m/s}{0.181 s}=91.2 m/s^2

And the distance covered by the ball during this time interval, before it is released, is:

S= \frac{1}{2} a_x (\Delta t)^2 = \frac{1}{2} (91.2 m/s^2)(0.181 s)^2=1.49 m

(b) For this part we need to consider also the weight of the ball, which is W=mg=2.28 N

From this, we find its mass: m= \frac{W}{g}= \frac{2.28 N}{9.81 m/s^2}=0.23 Kg

Now we can calculate the magnitude of the force the pitcher exerts on the ball. On the x-axis, we have

F_x = m a_x = (0.23 kg)(91.2 m/s^2)=20.98 N

We also know that the ball is moving straight horizontally. This means that the vertical component of the force exerted by the pitcher must counterbalance the weight of the ball (acting downward), in order to have a net force of zero along the y-axis, and so:

F_y=W=mg=2.28 N (upward)

So, the magnitude of the force is

F= \sqrt{F_x^2+F_y^2}=  \sqrt{(20.98N)^2+(2.28N)^2}=21.2 N

To find the direction, we should find the angle of F with respect to the horizontal. This is given by

\tan \alpha =  \frac{F_y}{F_x}= \frac{2.28 N}{20.98 N}=0.11

From which we find \alpha=6.2^{\circ}

7 0
2 years ago
Read 2 more answers
The internal shear force V at a certain section of a steel beam is 80 kN, and the moment of inertia is 64,900,000 . Determine th
Luba_88 [7]

Here is the complete question

The internal shear force V at a certain section of a steel beam is 80 kN, and the moment of inertia is 64,900,000 . Determine the horizontal shear stress at point H, which is located L  = 20 mm below the centriod

The missing image which is the remaining part of this question is attached in the image below.

Answer:

The horizontal shear stress at point H is  \mathbf{\tau_H \approx  42.604 \ N/mm^2}

Explanation:

Given that :

The internal shear force V  =  80 kN = 80 × 10³ N

The moment of inertia = 64,900,000

The length = 20 mm below the centriod

The horizontal shear stress  \tau can be calculated by using the equation:

\tau = \dfrac{VQ}{Ib}

where;

Q = moment of area above or below the point H

b = thickness of the beam = 10  mm

From the centroid ;

Q = Q_1 + Q_{2}

Q = A_1y_1 + A_{2}y_{2}  

Q = ( ( 70 × 10) × (55) + ( 210 × 15) (90 + 15/2) ) mm³

Q = ( ( 700) × (55) + ( 3150 ) ( 97.5)  ) mm³

Q = ( 38500 +  307125 ) mm³

Q = 345625 mm³

\tau_H = \dfrac{VQ}{Ib}

\tau_H = \dfrac{80*10^3  * 345625}{64900000*10 }

\tau_H = \dfrac{2.765*10^{10}}{649000000 }

\tau_H = 42.60400616 \ N/mm^2

\mathbf{\tau_H \approx  42.604 \ N/mm^2}

The horizontal shear stress at point H is  \mathbf{\tau_H \approx  42.604 \ N/mm^2}

7 0
2 years ago
Which description best matches the image below of a hand that is using the right-hand palm rule?
otez555 [7]

Answer:

When reviewing the results, the correct one is C

Explanation:

The right hand rule is widely useful in knowing the direction of force in a maganto field,

The ruler sets the thumb in the direction of the positive particle, the fingers extended in the direction of the magnetic field, and the palm in the direction of the force.

Let's apply this to our exercise.

The thumb that is the speed goes in the negative direction of the axis,

The two extended that the magnetic field look negative x,

The span points entered the dear sheet the negative the Z axis

When reviewing the results, the correct one is C

8 0
2 years ago
"In analyzing distances by apply ing the physics of gravitational forces, an astronomer has obtained the expression
zavuch27 [327]

Answer:

The value of R is 1.72\times10^{11}\ m.

(B) is correct option.

Explanation:

Given that,

In analyzing distances by apply ing the physics of gravitational forces, an astronomer has obtained the expression

R=\sqrt{\dfrac{1}{(\dfrac{1}{140\times10^{9}})^2-(\dfrac{1}{208\times10^{9}})^2}}

We need to calculate this for value of R

R=\sqrt{\dfrac{1}{(\dfrac{1}{140\times10^{9}})^2-(\dfrac{1}{208\times10^{9}})^2}}

R=1.89\times10^{11}\ m

So, The nearest option of the value of R is 1.72\times10^{11}\ m

Hence, The value of R is 1.72\times10^{11}\ m.

6 0
2 years ago
A circular coil has a 10.0 cm radius and consists of 30.0 closely wound turns of wire. an externally produced magnetic field of
IrinaVladis [17]
Magnetic flux can be calculated by the product of the magnetic field and the area that is perpendicular to the field that it penetrates. It has units of Weber or Tesla-m^2. For the first question, when there is no current in the coil, the flux would be:

ΦB = BA
          A = πr^2
          A = π(.1 m)^2
          A = π/100 m^2   

 ΦB = 2.60x10^-3 T (π/100 m^2 ) ΦB = 8.17x10^-5 T-m^2 or Wb (This is only for one loop of the coil)

The inductance on the coil given the current flows in a certain direction can be calculated by the product of the total number of turns in the coil and the flux of one loop over the current passing through. We do as follows:

L = N (ΦB ) / I
L = 30 (8.17x10^-5 T-m^2) / 3.80 = 6.44x10^-4 mH

6 0
2 years ago
Other questions:
  • Two roads intersect at right angles, one going north-south, the other east-west. an observer stands on the road 60 meters south
    15·2 answers
  • Which is the BEST example of refraction?
    13·2 answers
  • A car with a mass of 1400kg is being driven along the motorway at 30m/s. Calculate the kinetic energy of the car
    14·1 answer
  • calculate the final centigrade temperature required to change 20 litres of gas at 120 degree Celsius and 1 atmosphere to 25 litr
    11·1 answer
  • If an electron is accelerated from rest through a potential difference of 9.9 kV, what is its resulting speed?
    12·1 answer
  • What mass needs to be attached to a spring with a force constant of 7N/m in order to make a simple harmonic oscillator oscillate
    9·1 answer
  • 1)After catching the ball, Sarah throws it back to Julie. However, Sarah throws it too hard so it is over Julie's head when it r
    9·1 answer
  • A wrench is placed at 30 cm in front of a diverging lens with a focal length of magnitude 10 cm. What is the magnification of th
    13·1 answer
  • A thin hoop with a mass of 5.0 kg rotates about a perpendicular axis through its center. A force F is exerted tangentially to th
    9·1 answer
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!