Answer:
The coefficient of kinetic friction 
Explanation:
From the question we are told that
The length of the lane is 
The speed of the truck is 
Generally from the work-energy theorem we have that

Here N is the normal force acting on the truck which is mathematically represented as
is the change in kinetic energy which is mathematically represented as
=>
=>

=> 
=> 
Answer:
kJ/mol
Explanation:
= initial vapor pressure = 45.77 mm Hg
= final vapor pressure = 193.1 mm Hg
= initial temperature = 213.1 K
= final temperature = 243.7 K
= Heat of vaporization
Using the equation


J/mol
kJ/mol
If the scale reads 650N, then the mass of whoever it is standing on the scale is
(weight) / (gravity) = (650N) / (9.8 m/s²) = 66.3 kilograms .
It's not MY mass, even if I'm the one standing on the scale.
If I stand on a scale and it reads 650 N, the scale is broken.
Answer:
7.3 kg m/s
Explanation:
First of all, let's calculate the gravitational potential energy of the stone as it reaches its highest point:

For the law of conservation of energy, this is equal to the initial kinetic energy of the stone at ground level (where the potential energy is zero), just after the stone leaves your hand:

From this equation we can find the velocity of the stone as it leaves your hand:

The initial velocity of the stone (before leaving your hand) is zero:

The impulse received by the stone is equal to its change in momentum, so:
