answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
2 years ago
9

An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass

md = 2.1 kg and radius rd = 0.1 m. the other end of the string is attached to a massless axel through the center of an orange sphere on a flat horizontal surface that rolls without slipping and has mass ms = 4.3 kg and radius rs = 0.18 m. the system is released from rest. 1) what is magnitude of the linear acceleration of the hoop?
Physics
1 answer:
Otrada [13]2 years ago
7 0
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table. 
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. 
I = 7/5*mR^2 M = 7/5*m 
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2 
You might be interested in
Determine the sign (+ or −) of the torque about the elbow caused by the biceps, τbiceps, the sign of the weight of the forearm,
Alex Ar [27]
Ans: 
1.  τbiceps = +(Positive)
2.  τforearm = -(Negative)
3.  τball = -(Negative)

Explanation:

The figure is attached down below.

1. T<span>orque about the elbow caused by the biceps, τbiceps:
Since Torque = r x F (where r and F are the vectors)
</span>Where r is the vector from elbow to the biceps.
<span>
We can see in the figure that F(biceps) is in upward direction, and by applying the right hand rule from r to F, we get the counterclockwise direction. The torque in counterclockwise direction is positive(+). Therefore, the sign would be +.

2. </span>Torque about the the weight of the forearm, τforearm:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the forearm.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(forearm) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

3. Torque about the the weight of the ball, τball:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the ball.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(ball) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

8 0
1 year ago
A 1000 kg roller coaster begins on a 10 m tall hill with an initial velocity of 6m/s and travels down before traveling up a seco
balu736 [363]

Answer:

10.6 meters.

Explanation:

We use the law of conservation of energy, which says that the total energy of the system must remain constant, namely:

\frac{1}{2}mv_i^2+mgh_i-1700j=\frac{1}{2}mv_f^2+mgh_f

In words this means that the initial kinetic energy of the roller coaster plus its gravitational potential energy minus the energy lost due to friction (1700j) must equal to the final kinetic energy at top of the second hill.

Now let us put in the numerical values in the above equation.

m=100kg

h_i=10m

v_i= 6m/s

v_f=4,6m/s

and solve for h_f

h_f= \frac{\frac{1}{2}mv_i^2+mgh_i-1700j-\frac{1}{2}mv_f^2}{mg} =\boxed{ 10.6\:meters}

Notice that this height is greater than the initial height the roller coaster started with because the initial kinetic energy it had.

6 0
2 years ago
Force X has a magnitude of 1260 ​pounds, and Force Y has a magnitude of 1530 pounds. They act on a single point at an angle of 4
weeeeeb [17]

Answer:

Fe= 2579.68 P

α= 24.8°

Explanation:

Look at the attached graphic

we take the forces acting on the x-y plane and applied at the origin of coordinates

FX = 1260 P , horizontal (-x)

FY = 1530  P , forming 45° with positive x axis

x-y components FY

FYx= - 1530*cos(45)° = - 1081.87 P

FYy= -  1530*sin(45)° = - 1081.87 P

Calculation of the components of net force (Fn)

Fnx= FX + FYx

Fnx= -1260 P -1081.87 P

Fnx= -2341.87 P

Fny=FYy

Fny= -1081.87 P

Calculation of the components of equilibrant force (Fe)

the x-y components of the  equilibrant force are equal in magnitude but in the opposite direction to the net force components:

Fnx= -2341.87 P, then, Fex= +2341.87 P

Fny=  -1081.87 P P, then, Fex= +1081.87 P

Magnitude of the equilibrant (Fe)

F_{n} = \sqrt{(F_{nx})^{2} +(F_{ny})^{2}  }

F_{e} =\sqrt{(2341.87)^{2}+(1081.87)^{2}  }

Fe= 2579.68 P

Calculation of the direction of  equilibrant force (α)

\alpha =tan^{-1} (\frac{F_{ny} }{F_{nx} } )

\alpha =tan^{-1} (\frac{1081.87 }{2341.87} )

α= 24.8°

Look at the attached graphic

6 0
1 year ago
Which statement correctly compares and contrasts the information represented by the chemical formula and model of a compound?
Alina [70]
Models show how the atoms in a compound are connected.
6 0
1 year ago
Read 2 more answers
. Suppose you have a device that extracts energy from ocean breakers in direct proportion to their intensity. If the device prod
slava [35]

Answer:

4.988kW

Explanation:

According to the question, energy E extracted from the ocean breaker is directly proportional to the intensity I. It can be expressed mathematically as E ∝ I

E = kI where k is the constant of proportionality.

From the formula; k = E/I

This shows that increase in energy extracted will lead to increase in its intensity and vice versa.

If the device produces 10.0 kW of power on a day when the breakers are 1.20 m high

E = 10kW and I = 1.20m

k = 10/1.20

k = 8.33kW/m

To know how much energy E that will be produced when they are 0.600 m high, we will use the same formula

k = E/I where;

k = 8.33kW/m

I = 0.600m

E = kI

E = 8.33 × 0.6

E = 4.998kW

The device will produce energy of 4.998kW when they are 0.600m high.

3 0
1 year ago
Read 2 more answers
Other questions:
  • if you apply a Force of F1 to area A1 on one side of a hydraulic jack, and the second side of the jack has an area that is twice
    7·1 answer
  • Two small aluminum spheres, each of mass 0.0250 kilograms, areseparated by 80.0 centimeters.
    7·1 answer
  • Someone fires a 0.04 kg bullet at a block of wood that has a mass of 0.5 kg. (The block of wood is sitting on a frictionless sur
    12·1 answer
  • The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.4μT)sin((1.05×107)x−ωt), where x is in m and t is in s. You
    12·1 answer
  • Which lanyard provides an impact force of less than 1,800 pounds, as recommended by good practices?
    10·1 answer
  • Calculate the energy in the form of heat (in kJ) required to change 75.0 g of liquid water at 27.0 °C to ice at –20.0 °C. Assume
    15·1 answer
  • The 1.5-in.-diameter shaft AB is made of a grade of steel with a 42-ksi tensile yield stress. Using the maximum-shearing-stress
    8·1 answer
  • A measuring microscope is used to examine the interference pattern. It is found that the average distance between the centers of
    7·1 answer
  • 2.0 kg of solid gold (Au) at an initial temperature of 1000K is allowed to exchange heat with 1.5 kg of liquid gold at an initia
    5·1 answer
  • The late news reports the story of a shooting in the city. Investigators think that they have recovered the weapon and they run
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!