Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Answer:
= 85.89 ° C
Explanation:
The linear thermal expansion process is given by
ΔL = L α ΔT
For the three-dimensional case, the expression takes the form
ΔV = V β ΔT
Let's apply this equation to our case
ΔV / V = -0.507% = -0.507 10-2
ΔT = (ΔV / V) 1 /β
ΔT = -0.507 10⁻² 1 / 1.15 10⁻³
ΔT = -4.409
–T₀ = 4,409
= T₀ - 4,409
= 90.3-4409
= 85.89 ° C
Answer:
he factor for the temporal part 1.296 107 s² = h²
m / s² = 12960 km / h²
Explanation:
This is a unit conversion exercise.
In the unit conversion, the size of the object is not changed, only the value with respect to which it is measured is changed, for this reason in the conversion the amount that is in parentheses must be worth one.
In this case, it is requested to convert a measure km/h²
Unfortunately, it is not clearly indicated what measure it is, but the most used unit in physics is m / s² , which is a measure of acceleration. Let's cut this down
the factor for the distance is 1000 m = 1 km
the factor for time is 3600 s = 1 h
let's make the conversion
m / s² (1km / 1000 m) (3600 s / 1h)²
note that as time is squared the conversion factor is also squared
m / s² = 12960 km / h²
the factor for the temporal part 1.29 107 s² = h²