<h3><u>Answer</u>;</h3>
A) the resting position of the wave
<h3><u>Explanation</u>;</h3>
- A wave is a transmission of a disturbance from one point which is the source to another, and this involves transfer of energy through a material medium.
- <em><u>Equilibrium refers to a state of balance between opposing forces, it is a state of balance in which opposing forces cancel one another. </u></em>
- <em><u>When wave is in rest position its called equilibrium position of a wave. When a wave travels through a material medium, the particles in the medium are disturbed from their resting, or equilibrium positions.</u></em>
A) f = 1.8 rev/s = 2 Hz
<span>T = 1 / f = 0.55s
B) not really sure..srry
C) </span><span>T = 2 pi √ ( L / g ) </span>
<span>0.57 = 2 x 3.14 x √ ( 0.2 / g )
</span><span>
g = 25.5 m/s²
</span>
Hope this helps a little at least.. :)
Answer:
a) 2.5 m/s. (In the opposite direction to the direction in which she threw the boot).
b) The centre of mass is still at the starting point for both bodies.
c) It'll take Sally 12 s to reach the shore which is 30 m from her starting point.
Explanation:
Linear momentum is conserved.
(mass of boot) × (velocity of boot) + (mass of sally) × (velocity of Sally) = 0
5×30 + 60 × v = 0
v = (-150/60) = -2.5 m/s. (Minus inicates that motion is in the opposite direction to the direction in which she threw the boot).
b) At time t = 10 s,
Sally has travelled 25 m and the boot has travelled 300 m.
Taking the starting point for both bodies as the origin, and Sally's direction as the positive direction.
Centre of mass = [(60)(25) + (5)(-300)]/(60+5)
= 0 m.
The centre of mass is still at the starting point for both bodies.
c) The shore is 30 m away.
Speed = (Distance)/(time)
Time = (Distance)/(speed) = (30/2.5)
Time = 12 s
Hope this Helps!!!
Iodine is the answer to your question buddy