An oven mitt is used to take the tray out of the oven because it’s an insulator.
Answer:
Final velocity of the block = 2.40 m/s east.
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum
Mass of bullet = 0.0140 kg
Consider east as positive.
Initial velocity of bullet = 205 m/s
Mass of Block = 1.8 kg
Initial velocity of block = 0 m/s
Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s
Final velocity of bullet = -103 m/s
We need to find final velocity of the block( u )
Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u
We have
2.87 = -1.442 + 1.8 u
u = 2.40 m/s
Final velocity of the block = 2.40 m/s east.
Answer:
Explanation:
Initial velocity u = V₀ in upward direction so it will be negative
u = - V₀
Displacement s = H . It is downwards so it will be positive
Acceleration = g ( positive as it is also downwards )
Using the formula
v² = u² + 2 g s
v² = (- V₀ )² + 2 g H
= V₀² + 2 g H .
v = √ ( V₀² + 2 g H )
Answer:
Impulse = 90
Resulting Velocity = 89
Explanation:
Use F * change in time = m * change in velocity.
For the first part of the question, the left side of the equation is the impulse. Plug it in.
60 * (3.0 - 0) = 90.
For the second half. we use all parts of the equation. I'm gonna use vf for the final velocity.
60 * (3.0 - 0) = 10 * (vf - 80). Simplify.
90 = 10vf - 800. Simplify again.
890 = 10vf. Divide to simplify and get the answer.
The resulting velocity is 89.
Answer:
The skater's speed after she stops pushing on the wall is 1.745 m/s.
Explanation:
Given that,
The average force exerted on the wall by an ice skater, F = 120 N
Time, t = 0.8 seconds
Mass of the skater, m = 55 kg
It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :

The change in momentum is equal to the impulse delivered. So,

So, the skater's speed after she stops pushing on the wall is 1.745 m/s.