answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
2 years ago
12

A 1000 kg roller coaster begins on a 10 m tall hill with an initial velocity of 6m/s and travels down before traveling up a seco

nd hill. as the coaster moves from its initial height to its lowest position, 1700j of energy is transformed to thermal energy by friction. in order for the roller coaster to safely travel over the second hill, it must be moving at a velocity of 4.6m/s or less at the top of the second hill. what is the maximum height the second hill can be
Physics
1 answer:
balu736 [363]2 years ago
6 0

Answer:

10.6 meters.

Explanation:

We use the law of conservation of energy, which says that the total energy of the system must remain constant, namely:

\frac{1}{2}mv_i^2+mgh_i-1700j=\frac{1}{2}mv_f^2+mgh_f

In words this means that the initial kinetic energy of the roller coaster plus its gravitational potential energy minus the energy lost due to friction (1700j) must equal to the final kinetic energy at top of the second hill.

Now let us put in the numerical values in the above equation.

m=100kg

h_i=10m

v_i= 6m/s

v_f=4,6m/s

and solve for h_f

h_f= \frac{\frac{1}{2}mv_i^2+mgh_i-1700j-\frac{1}{2}mv_f^2}{mg} =\boxed{ 10.6\:meters}

Notice that this height is greater than the initial height the roller coaster started with because the initial kinetic energy it had.

You might be interested in
Derive an expression for the gravitational potential energy of a system consisting of Earth and a brick of mass m placed at Eart
Arlecino [84]

Answer:

The gravitational potential energy of a system is -3/2 (GmE)(m)/RE

Explanation:

Given

mE = Mass of Earth

RE = Radius of Earth

G = Gravitational Constant

Let p = The mass density of the earth is

p = M/(4/3πRE³)

p = 3M/4πRE³

Taking for instance,a very thin spherical shell in the earth;

Let r = radius

dr = thickness

Its volume is given by;

dV = 4πr²dr

Since mass = density* volume;

It's mass would be

dm = p * 4πr²dr

The gravitational potential at the center due would equal;

dV = -Gdm/r

Substitute (p * 4πr²dr) for dm

dV = -G(p * 4πr²dr)/r

dV = -G(p * 4πrdr)

The gravitational potential at the center of the earth would equal;

V = ∫dV

V = ∫ -G(p * 4πrdr) {RE,0}

V = -4πGp∫rdr {RE,0}

V = -4πGp (r²/2) {RE,0}

V = -4πGp{RE²/2)

V = -4Gπ * 3M/4πRE³ * RE²/2

V = -3/2 GmE/RE

The gravitational potential energy of the system of the earth and the brick at the center equals

U = Vm

U = -3/2 GmE/RE * m

U = -3/2 (GmE)(m)/RE

5 0
2 years ago
A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
mart [117]

Explanation:

It is given that,

The horizontal speed of a cliff diver, v_x=3.6\ m/s

It reaches the water below 2.00 s later, t = 2 s

Let d_x is the distance where the diver hit the water. It can be calculated as follows :

d_x=v_x\times t\\\\=3.6\times 2\\\\=7.2\ m

Let d_y is the height of the cliff. It can be calculated using second equation of motion as follows :

d_y=u_yt+\dfrac{1}{2}gt^2\\\\d_y=\dfrac{1}{2}\times 9.8\times 2^2\\\\=19.6\ m

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.

8 0
1 year ago
jesse is swinging miguel in a circle at a tangential speed of 3.50 m/s. if the radius of the circle is 0.600 m and miguel has a
Morgarella [4.7K]
Centripetal acceleration = (speed)² / (radius) .

Force = (mass) · (acceleration)

Centripetal force = (mass) · (speed)² / (radius) .

                             = (11 kg) · (3.5 m/s)² / (0.6 m)

                             = (11 kg) · (12.25 m²/s²) / (0.6 m)

                             =  (11 · 12.25) / 0.6  kg-m/s²

                             =      224.58 newtons.    (about 50.5 pounds)

That's the tension in Miguel's arm or leg or whatever part of his body
Jesse is swinging him by.  It's the centripetal force that's needed in
order to swing 11 kg in a circle with a radius of 0.6 meter, at 3.5
meters/second.  If the force is less than that, then the mass has to
either swing slower or else move out to follow a bigger circle.
6 0
2 years ago
Read 2 more answers
A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp
Ahat [919]

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

5 0
1 year ago
Read 2 more answers
Plug variables expressed in SI units in the kinematic equation given in article: a = -v0^2/(2sg). What value of g you get as exp
Elanso [62]

Answer:

1) acceleration is increased by a factor of four 4X

2) the acceleration increases a factor of 2X

3) the correct answer of 400g

Explanation:

This is a kinematics exercise, where you use the velocity equation to obtain the acceleration, with the final velocity equal to zero.

           v² = v₀² + 2 a x

           0 = v₀² + 2 a x

           a = - v₀² / 2 x

           

In the case of wanting to give the acceleration as a function of g, we can find the relationship between the two quantities

         a / g = - v₀² / (2 x g)

Let's answer the different questions about this equation

1. The initial velocity is doubled, how much the acceleration is worth

           

       a/g = - (2v₀) 2 / 2xg

       a = 4 (-v₀² / 2xg) g

acceleration is increased by a factor of four 4X

2. if the stopping distance is reduced by 2, that is, x = x₀ / 2

we substitute

        a/g = (- v₀² / 2g) 2/x

         

        a =2  (-v₀² / 2x₀g)  g

       

therefore the acceleration increases a factor of 2X

3. the initial velocity of the hockey player is v₀ = 20 m / s and the stopping distance is

x = 5cm = 0.05m

we calculate the acceleration

        a / g = - 20² / (2 0.05)

        a / g = - 4000 / g

        a / g = - 4000 / 9.8 = 408

        a = 408 g

the correct answer of 400g, the value matches exactly if g = 10 m / s2 is taken

6 0
2 years ago
Other questions:
  • What upward gravitational force does a 5600kg elephant exert on the earth?
    12·2 answers
  • A quantum system has three energy levels, so three wavelengths appear in its emission spectrum. the shortest observed wavelength
    7·1 answer
  • A helicopter is traveling at 86.0 km/h at an angle of 35° to the ground. What is the value of Ax? Round your answer to the neare
    12·2 answers
  • A charge of 4 nc is placed uniformly on a square sheet of nonconducting material of side 17 cm in the yz plane. (a) what is the
    14·1 answer
  • A hockey puck of mass m traveling along the x axis at 4.5 m/s hits another identical hockey puck at rest. If after the collision
    14·1 answer
  • A 15-g bullet moving at 300 m/s passes through a 2.0 cm thick sheet of foam plastic and emerges with a speed of 90 m/s. Let's as
    14·1 answer
  • A pitching machine is programmed to pitch baseballs horizontally at a speed of 87 mph . The machine is mounted on a truck and ai
    8·1 answer
  • Wind blows at the speed of 30m/s across a 175m^2 flat roof if a house.
    14·1 answer
  • A school bus covers a distance of 7200 m in 1800 s. Calculate its speed.
    5·1 answer
  • Where is there kinetic energy in this system?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!