(u) = 20 m/s
(v) = 0 m/s
<span> (t) = 4 s
</span>
<span>0 = 20 + a(4)
</span><span>4 x a = -20
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
Answer:
<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>
Explanation:
The initial charge on 4 mF capacitor = 4 mf x 50 V = 200 mC
The initial Charge on 6 mF capacitor = 6 mf x 30 V =180 mC
Since the negative ends are joined together the total charge on both capacity would be;
q = 
q = 200 - 180
q = 20 mC
In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage
q = (4 x V) + (6 x V)
20 = 10 V
V = 2 V
For the final charge on 6.0 mF;
q = CV
q = 6.0 mF x 2 V
q = 12 mC
Therefore the final charge on the 6.0 mF capacitor would be 12 mC
Answer:
Explanation:
Given mg = 4N .
m = 4 / g
At the bottom of the swing let centripetal acceleration be a
T - mg = ma
9 - 4 = ma
5 = 4 a / g
a = 5g / 4
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
Answer:
20 cm
Explanation:
Te electric potential enery U = kq₁q₂/r were q₁ = 5 nC = 5 × 10⁻⁹ C and q₂ = -2 nC = -2 × 10⁻⁹ C and r = √(x - 2)² + (0 - 0)² +(0 - 0)² = x - 2. U = -0.5 µJ = -0.5 × 10⁻⁶ J, k = 9 × 10⁹ Nm²/C².
So r = kq₁q₂/U
x - 2 = kq₁q₂/U
x = 0.02 + kq₁q₂/U m
x = 0.02 + 9 × 10⁹ Nm²/C² × 5 × 10⁻⁹ C × -2 × 10⁻⁹ C/-0.5 × 10⁻⁶ J
x = 0.02 - 90 × 10⁻⁹ Nm²/-0.5 × 10⁻⁶ J
x = 0.02 + 0.18 = 0.2 m = 20 cm