<span>A decrease in the overall volume of gases namely hydrogen would prevent nuclear fusion in a nebula.</span>
Answer:
Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.
Explanation:
For the rod 1 the angular acceleration is
Similarly, for rod 2

Now, the moment of inertia for rod 1 is
,
and the torque acting on it is (about the center of mass)

therefore, the angular acceleration of rod 1 is


Now, for rod 2 the moment of inertia is


and the torque acting is (about the center of mass)


therefore, the angular acceleration
is


We see here that

therefore

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.
For this case we have that by definition:

Where,
- <em>m: mass of the object
</em>
- <em>a: acceleration of the object
</em>
- <em>F: summation of forces
</em>
We have then:

Then, by clearing the acceleration we have:

Substituting values we have:

Answer:
The acceleration of the box is equal to:

Answer:
When reviewing the results, the correct one is C
Explanation:
The right hand rule is widely useful in knowing the direction of force in a maganto field,
The ruler sets the thumb in the direction of the positive particle, the fingers extended in the direction of the magnetic field, and the palm in the direction of the force.
Let's apply this to our exercise.
The thumb that is the speed goes in the negative direction of the axis,
The two extended that the magnetic field look negative x,
The span points entered the dear sheet the negative the Z axis
When reviewing the results, the correct one is C
Answer:
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3
Explanation:
The density of a liquid is inversely proportional to the volume (height) of object submerged in it.
High density liquid possess higher buoyant force preventing objects from submerging.
p ∝ 1/V ∝ 1/h
since V = Ah
pu/pw = hw/hu
pu = pwhw/hu
Where;
p = density
h = height submerged
pu and pw is the density of unknown liquid and water respectively
hu and hw is the height of object submerged in unknown liquid and water respectively
pw = 1000kg/m^3
hu = 4.6cm = 0.046m
hw = 5.8cm = 0.058m
Substituting the given values;
pu = 1000×0.058/0.046
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3