Answer:
b) It is impossible to tell without knowing the masses.
Explanation:
The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

where
Q is the amount of heat
m is the mass of the substance
Cs is the specific heat capacity of the substance
In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.
Answer:
<h2>
187,500N/m</h2>
Explanation:
From the question, the kinectic energy of the train will be equal to the energy stored in the spring.
Kinetic energy = 1/2 mv² and energy stored in a spring E = 1/2 ke².
Equating both we will have;
1/2 mv² = 1/2ke²
mv² = ke²
m is the mass of the train
v is the velocity of then train
k is the spring constant
e is the extension caused by the spring.
Given m = 30000kg, v = 4 m/s, e = 4 - 2.4 = 1.6m
Substituting this values into the formula will give;
30000*4² = k*1.6²

The value of the spring constant is 187,500N/m
P = mv
p = 3.5 × 5
p = 17.5 kg .m/s
Hope this helps!
Acceleration is the change in velocity divided by time. The change in velocity is -30m/s and time is 5s. If you divide -30m/s by 5s, you get -6m/s<span>².</span>
Answer:

Explanation:
-The only relevant force is the electrostatic force
-The formula for the electrostatic force is:

E is the electric field and q is the magnitude of the charge.
#Since the electric field is the same in both cases, and the charge of the protons and electrons have the same magnitude, you can state that the magnitude of the electric forces acting in both proton and electron are the same.

-Applying Newton's 2nd Law:



#equate the two forces:

#The equations for velocity in uniform acceleration:

#For the proton:

#For the electron:

The mass values of the proton and electron are:

The speed of the ion is therefore calculated as:

Hence, the ion's speed at the negative plate is 