answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astra-53 [7]
2 years ago
7

Explain how scientists know that elephants and hyraxes are related. Be sure to include anatomical similarities as well as fossil

evidence in your explanation.
Physics
2 answers:
leonid [27]2 years ago
8 0

<em>Hyraxes, elephants and dugongs are more closely related to one another than to any other living animal.  Well, that's not exactly true. The closest surviving relative of the dugong is the manatee, a fresh-water, New-World version of itself. Apart from this, and the fact that there are two species of elephant and several of hyrax, it's absolutely true. Hyraxes, elephants and dugongs evolved from a single common ancestor.</em>

                                          Hope This Helps

mojhsa [17]2 years ago
7 0

This is the exact answer:

Elephants and hyraxes share many anatomical similarities. They both have flat, hoof-like nails on the tips of their toes. They also have four toes on their front feet and three toes on their rear feet. Elephants and hyraxes both develop tusks from their incisor teeth instead of their canine teeth, like most other mammals. In addition to the anatomical similarities, fossil evidence has revealed that hyraxes and elephants share a 40-million-year-old ancestor.

You might be interested in
Two speakers both emit sound of frequency 320 Hz, and are in phase. A receiver sits 2.3 m from one speaker, and 2.9 m from the o
satela [25.4K]

Answer:

Option B

Explanation:

The phase difference is found by subtracting the 2.3m for the receiver from the other speaker which is 2.9m hence

Phase difference= 2.9-2.3= 0.6

3 0
2 years ago
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
2 years ago
The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
meriva

Answer:

(a) 1.87 x 10⁻⁴ m/s

(b) 0.013V

Explanation:

(a) Drift speed, v_{d} , is the average velocity that a charged particle can have due to an electric field. For a given current, I, the drift velocity is given by;

v_{d} = \frac{I}{qnA}             ----------------(i)

Where;

q = amount of charge

n = free charge density

A = cross-sectional area of the wire

But current density, J, is the electric current per unit cross-section area. This  is also equal to the ratio of the electric field, E, to the resistivity, p, of the material of the wire. i.e

J = \frac{I}{A} = \frac{E}{p}

Equation (i) can then be written as follows;

v_{d} = \frac{J}{qn} = \frac{E}{qnp}

v_{d} = \frac{E}{qnp}      ---------------------(ii)

From the question;

E = 0.0520N/C

p = 1.72 x 10⁻⁸ Ωm

n = 8.5 x 10²⁸ electrons/m³

c = charge on electron = 1.9 x 10⁻¹⁹C

Substitute these values into equation (ii) as follows;

v_{d} = \frac{0.0520}{1.9*10^{-19} * 8.5*10^{28} * 1.72*10^{-8}}

v_{d} = 1.87 x 10⁻⁴ m/s

(b) The potential difference, V, is given by the product of the electric field and the distance, d, between the two points in the wire. i.e

V = E x d        [where d = 25.0cm = 0.25m]

V = 0.0520 x 0.25

V = 0.013V

4 0
2 years ago
5. Measure: With the lights on, click Pause. Turn on Show rulers. A. The wavelength of a longitudinal wave is equal to the dista
Marysya12 [62]

Explanation:

A) The distance between the two successive compressions (or rarefactions) is actually called the wavelength of the longitudinal waves.

B) Wavelengths of longitudinal and transverse waves are comparable in the fact that in a transverse wave, the particles move perpendicular to the direction the wave travels whereas in a longitudinal wave the particles are displaced along the direction to the direction the wave travels

6 0
2 years ago
a box weighing 155 N is pushed horizontally down the hall at constant velocity. the applied force is 83 n what is the coefficien
meriva

Answer:

μ = 0.535

Explanation:

On a level floor, normal force = weight.

N = W

Friction force = normal force × coefficient of friction.

F = Nμ

Substitute:

F = Wμ

83 = 155μ

μ = 0.535

Round as needed.

8 0
2 years ago
Other questions:
  • Atmospheric pressure decreases as altitude increases. in other words, there is more air pushing down on you at sea level, and th
    8·1 answer
  • an 2-kg object is moving horizontally with a speed of 4m/s. how much net force os required to keep the object movong with the sa
    8·1 answer
  • Charina says that when waves interact with an object, they will interfere with the object, and that when waves interact with oth
    13·2 answers
  • How far could a rabbit run if it ran 36km/h for 5.0min?
    5·2 answers
  • What is the change in length of a 1400. m steel, (12x10^-6)/(C0) , pipe for a temperature change of 250.0 degrees Celsius? Remem
    11·1 answer
  • (8%) Problem 9: Helium is a very important element for both industrial and research applications. In its gas form it can be used
    8·1 answer
  • A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
    13·1 answer
  • Two identical stunt professionals A and B stand on the roof of building 1. Person A steps off of the roof and falls vertically o
    8·1 answer
  • What is the speed of light (in m/s) in air? (Enter your answer to at least four significant figures. Assume the speed of light i
    5·1 answer
  • A water-skier with weight Fg = mg moves to the right with acceleration a. A horizontal tension force T is exerted on the skier b
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!