Let h = the distance from the edge of the wall to the water surface (m).
Use g = 9.8 m/s² and neglect air resistance.
The initial vertical velocity of the pebble is zero.
Because the pebble hits the surface of the water after 1.5 s, therefore
h = (1/2)*(9.8 m/s²)*(1.5 s)² = 11.025 m
Answer: 11.025 m
Answer:
0.5 m/s2
Explanation:
Step 1:
Data obtained from the question.
Total Mass = 60Kg
Net force = 30N
Acceleration =?
Step 2
Determination of the acceleration.
Force = Mass x Acceleration.
With the above equation, we can easily obtain the acceleration as follow:
30 = 60 x Acceleration
Divide both side by 60
Acceleration = 30/60
Acceleration = 0.5 m/s2
Now, we can thus say that the acceleration at that moment is 0.5 m/s2
Answer:
d = 84 m
Explanation:
As we know that when an object moves with uniform acceleration or deceleration then we can use equation of kinematics to find the distance moved by the object
here we know that
initial speed 
final speed 
time taken by the car to stop

now the distance moved by the car before it stop is given as

now we have


Answer:

Explanation:
Outside the sphere's surface, the electric field has the same expression of that produced by a single point charge located at the centre of the sphere.
Therefore, the magnitude of the electric field ar r = 5.0 cm from the sphere is:

where
is the Coulomb's constant
is the charge on the sphere
is the radius of the sphere
is the distance from the surface of the sphere
Substituting, we find

Answer:
W = 506.75 N
Explanation:
tension = 2300 N
Rider is towed at a constant speed means there no net force acting on the rider.
hence taking all the horizontal force and vertical force in consideration.
net horizontal force:
F cos 30° - T cos 19° = 0
F cos 30° = 2300 × cos 19°
F = 2511.12 N
net vertical force:
F sin 30° - T sin 19°- W = 0
W = F sin 30° - T sin 19°
W = 2511.12 sin 30° - 2300 sin 19°
W = 506.75 N