The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time
The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.
Distance = 10 * 1.06
Distance = 10.6 meters
The boat should be 10.6 meters away horizontally from the point of release.
Explanation:
Below is an attachment containing the solution
Answer:
1.95m/s
Explanation:
Please view the attached file for the detailed solution.
The following were the conversion factors used in order to express all quatities in SI units:

<u>Answer:</u>
Option: D. Gravity is pulling the crash test dummy in the direction the car is moving.
<u>Explanation:
</u>
When a car accelerates from a standing start, the crash test dummy appears to be pressed backward into the seat cushion because the gravity is pulling the crash test dummy in the direction the car is moving.
Basically when the car is starting, the person inside is in static position and the car is going to move. So it is putting a force on the person to move on the same speed. But as the person is sitting static hence gravity is pulling him behind from moving. Hence, The dummy appears to be pressed backward.
I know you're probably done with this by now, but the answer is *Lake-Effect Snow*