Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Answer:
Q=1005 J
t= 0.67 sec
Explanation:
Lets take condition of room is 1 atm and 25°C.
Heat capacity ,c = 21 J /K.mol
If we assume that air is ideal gas that
P V = n R T



V= 107250 L
At STP number of moles given as

V=22.4 L at S.T.P.

n=4787.94 moles
n= 4.784 Kmoles
So heat required to raise 10°C temperature
Q = n x c x ΔT
Q = 4.78794 x 21 x 10
Q=1004.64 J
Time t
t= Q/P
P= 1.5 KW
t = 1.004.64 /1.5
t= 0.66 sec
Answer:
The boiling point of Acetone is 329K (in 3 significant figures)
Explanation:
Boiling point of Acetone = 56°C = 56 + 273K = 329K (in 3 significant figures)
Answer:
The water will flow at a speed of 3,884 m/s
Explanation:
Torricelli's equation
v = 
*v = liquid velocity at the exit of the hole
g = gravity acceleration
h = distance from the surface of the liquid to the center of the hole.
v =
= 3,884 m/s
A).
It would decrease because the speed of sound and temperature are proportional.