answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
2 years ago
10

A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d

irection at a velocity of +4 meters/second with respect to himself. If the ball lands after 30 seconds, about how far does it land horizontally from the point at which it was released?
A. 120 meters B. 125 meters C. 300 meters D. 420 meters
Physics
1 answer:
yulyashka [42]2 years ago
3 0

Option (D) is correct.

The balloon lands horizontally at a distance of 420 m from a point where it as released.

Explanation:

Velocity of air balloon along +X axis =10 m/s

velocity of ball=4 m/s along + X axis

the velocity of balloon gets added to the velocity of ball. So the resultant velocity of the balloon=10+4 = 14 m/s

time taken= 30 s

The distance traveled is given by d= v t

d= 14 (30)

d= 420 m

Thus the balloon lands horizontally at a distance of 420 m from a point where it as released.

You might be interested in
If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
vovikov84 [41]

Complete Question

In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?

Answer:

The speed of the helicopter is u  =  7.73 \  m/s

Explanation:

From the question we are told that

   The height at which he let go of the brief case is  h =  130 m  

    The  time taken before the the brief case hits the water is  t =  6 s

Generally the initial speed of the  briefcase (Which also the speed of the helicopter )before the man let go of it is  mathematically evaluated using kinematic equation as

      s = h+  u t +  0.5 gt^2

Here s  is the distance covered by the bag at sea level which is zero

      0 = 130+  u * (6) +  0.5  *  (-9.8) * (6)^2

=>    0 = 130+  u * (6) +  0.5  *  (-9.8) * (6)^2

=>   u  =  \frac{-130 +  (0.5 * 9.8 *  6^2) }{6}

=>   u  =  7.73 \  m/s

     

7 0
2 years ago
A planar loop consisting of seven turns of wire, each of which encloses 200 cm2, is oriented perpendicularly to a magnetic field
PtichkaEL [24]

Answer:

The induced current is 0.084 A

Explanation:

the area given by the exercise is

A = 200 cm^2 = 200x10^-4 m^2

R = 5 Ω

N = 7 turns

The formula of the emf induced according to Faraday's law is equal to:

ε = (-N * dφ)/dt = (N*(b2-b1)*A)/dt

Replacing values:

ε = (7*(38 - 14) * (200x10^-4))/8x10^-3 = 0.42 V

the induced current is equal to:

I = ε /R = 0.42/5 = 0.084 A

3 0
2 years ago
Read 2 more answers
A runner runs 4875 ft in 6.85 minutes. what is the runners average speed in miles per hour?
yanalaym [24]

The average speed can be easily calculated by taking the ratio of distance and time. That is:

average speed = distance / time

 

so calculating:

average speed = 4875 ft / 6.85 minutes

<span>average speed = 711.68 ft / min</span>

8 0
2 years ago
Read 2 more answers
If the magnitude of charges on these source charges is arranged in a descending order, which is the correct sequence?
bonufazy [111]
The source charges' magnitude is signified by the arrows pointing outward. The more arrows there are, the greater is its magnitude. This is because, each arrow represents an electrical force exerted by the source. When you add up all the arrows there is, the electrical force becomes even greater. The answer in descending order would be C > A > B > D.
6 0
2 years ago
Read 2 more answers
When boiling water, a hot plate takes an average of 8 minutes and 55 seconds to boil 100 milliliters of water. Assume the temper
alexandr1967 [171]

Answer:

90.9 seconds

Explanation:

m = Mass of liquid = Volume×Density

c = Specific heat

\Delta T = Change in temperature

t = Time taken

Room temperature = 75 °F

Converting to Celsius

(75-32)\times \frac{5}{9}=23.889\ ^{\circ}C

Heat required to raise the temperature of water

Q=mc\Delta T\\\Rightarrow Q=100\times 10^{-6}\times 1000\times 4186\times (100-23.889)\\\Rightarrow Q=31860.0646\ J

Power

P=\frac{Q}{t}\\\Rightarrow P=\frac{31860.0646}{8\times 60+55}\\\Rightarrow P=59.55152\ W

Efficiency of the plate

\frac{59.5512}{283}\times 100=21.04282\%

Heat required to raise the temperature of water

Q=mc\Delta T\\\Rightarrow Q=100\times 10^{-6}\times 784\times 2150\times (56-23.889)\\\Rightarrow Q=5412.63016\ J

P=\frac{Q}{t}\\\Rightarrow t=\frac{Q}{P}\\\Rightarrow t=\frac{5412.63016}{0.2104282\times 283}\\\Rightarrow t=90.9\ s

Time taken to heat the aceton is 90.9 seconds

4 0
2 years ago
Other questions:
  • Why do charges build up on clothing in an electric dryer?
    7·2 answers
  • A metal ball with diameter of a half a centimeter and hanging from an insulating thread is charged up with 1010 excess electrons
    10·1 answer
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • A proton (1.6726 ? 10-27 kg) and a neutron (1.6749 ? 10-27 kg) at rest combine to form a deuteron, the nucleus of deuterium or "
    7·1 answer
  • A ball of mass 5.0kg is lifted off the floor a distance of 1.7m. 1. What is the change in the gravitational potential energy of
    13·1 answer
  • A truck of mass 1800kg is moving with a speed 54km/h. When brakes are applied, it
    12·1 answer
  • A foam ball of mass 0.150 g carries a charge of -2.00 nC. The ball is placed inside a uniform electric field, and is suspended a
    5·1 answer
  • You’re squeezing a springy rubber ball in your hand. If you push inward on it with a force of 1 N, it dents inward 2 mm. How far
    11·1 answer
  • The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given b
    14·1 answer
  • 1. A diffraction grating with 5.000 x 103 lines/cm is used to examine the sodium
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!