Brian’s Complexity Brian’s Complexity Brian’s Complexity Brian’s Complexity
1. a. longitudinal waves.
There are two types of waves:
- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave
- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.
So, these types of waves are called longitudinal waves.
2. d. a medium
There are two types of waves:
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium
3. a. AM/FM radio
Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.
Answer:

Explanation:
Given:
<u>the thermal resistance in the form of </u>


where:
are the thickness of the respective bricks
are the respective coefficient of conductivity
temperature inside the house, 
temperature outside the house, 
area of the wall, 
Since the bricks and insulation are used to construct a wall then they must be used in series for better shielding.
<u>Using Fourier's law:</u>


in series the resistances get add up



The answer should be:
<span>To prevent collisions and violations at intersections that have traffic signals, use the d</span>elayed acceleration technique<span> to ensure the intersection is clear before you enter it.
Delayed acceleration technique refers to w</span><span>aiting to go through an intersection until you have a chance to scan for other vehicles.</span>
Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.