I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.

Then, while the car is traveling down the track it loses some of its initial energy due to friction:

So, we know that the car is approaching the point B with the following amount of energy:

The law of conservation of energy tells us that this energy must the same as the energy at point B.
The energy at point B is the sum of car's kinetic and potential energy:

As said before this energy must be the same as the energy of a car approaching the loop:

Now we solve the equation for

:
Hi, thank you for posting your question here at Brainly.
To compute for the change in potential energy, the equation would be:
delta PE = mg*delta h
delta PE = 0.5*9.81*(2-1.8)
delta Pe = 0.98 J
The potential energy is converted to kinetic energy.
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
Answer:
h = 10 m
Explanation:
given,
mass of platform = 50 Kg
Kinetic energy = 5000 J
height from which the diver dove = ?
taking acceleration due to gravity = 10 m/s²
using conservation of energy
Kinetic energy is converted into mechanical energy
K.E = P.E
K.E = m g h
5000 = 50 x 10 x h
500 h = 5000

h = 10 m
The height from which the diver dove is equal to h = 10 m