answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
2 years ago
15

A biophysics experiment uses a very sensitive magnetic field probe to determine the current associated with a nerve impulse trav

eling along an axon.
If the peak field strength 1.3mm from an axon is 9.0pT , what is the peak current carried by the axon?
Physics
1 answer:
fenix001 [56]2 years ago
7 0

Answer:

The peak current carried by the axon is 5.85 x 10⁻⁸ A

Explanation:

Given;

distance of the field from the axon, r = 1.3 mm

peak magnetic field strength, B = 9 x 10⁻¹² T

To determine the peak current carried by the axon, apply the following equation;

B = \frac{\mu I}{2\pi r}

where;

B is the peak magnetic field

r is the distance of the magnetic field from axon

μ is permeability of free space = 4π x 10⁻⁷

I is the peak current

Re-arrange the equation and solve for "I"

B = \frac{\mu I}{2\pi r} \\\\I = \frac{B*2\pi r}{\mu} \\\\I = \frac{9*10^{-12}*2*\pi *1.3*10^{-3}}{4\pi *10^{-7}} \\\\I = 5.85 *10^{-8} \ A

Therefore, the peak current carried by the axon is 5.85 x 10⁻⁸ A

You might be interested in
A slender rod is 80.0 cm long and has mass 0.370 kg . A small 0.0200-kg sphere is welded to one end of the rod, and a small 0.05
nataly862011 [7]

Answer:

1.10 m/s

Explanation:

Linear speed is given by

v=r\omega

Kinetic energy is given by

KE=0.5I\omega^{2}

Potential energy

PE= mgh

From the law of conservation of energy, KE=PE hence

0.5I\omega^{2}=mgh where m is mass, I is moment of inertia, \omega is angular velocity, g is acceleration due to gravity and h is height

Substituting m2-m1 for m and 0.5l for h, \frac {2v}{L} for \omega we obtain

0.5I(\frac {2v}{L})^{2}=0.5Lg(m2-m1)

(\frac {2v}{L})^{2}=\frac {gl(m2-m1)}{I} and making v the subject

v^{2}=\frac {gl^{3}(m2-m1)}{4I}

v=\sqrt {\frac {gl^{3}(m2-m1)}{4I}}

For the rod, moment of inertia I=\frac {ML^{2}}{12} and for sphere I=MR^{2} hence substituting 0.5L for R then I=M(0.5L)^{2}

For the sphere on the left hand side, moment of inertia I

I=m1(0.5L)^{2} while for the sphere on right hand side, I=m2(0.5L)^{2}

The total moment of inertia is therefore given by adding

I=\frac {ML^{2}}{12}+ m1(0.5L)^{2}+ m2(0.5L)^{2}=\frac {L^{2}(M+3m1+3m2)}{12}

Substituting \frac {L^{2}(M+3m1+3m2)}{12} for I in the equation v=\sqrt {\frac {gL^{3}(m2-m1)}{4I}}

Then we obtain

v=\sqrt {\frac {gL^{3}(m2-m1)}{4(\frac {L^{2}(M+3m1+3m2)}{12})}}=\sqrt {\frac {3gL^{3}(m2-m1)}{L^{2}(M+3m1+3m2)}}

This is the expression of linear speed. Substituting values given we get

v=\sqrt {\frac {3*9.81*0.8^{3}(0.05-0.02)}{0.8^{2}(0.39+3(0.02)+3(0.05))}} \approx 1.08 m/s

8 0
2 years ago
A hot–air balloon is moving at a speed of 10 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–dir
IrinaVladis [17]
The ball has an initial speed of 10m/s. This is because it is moving with the balloon. Now the balloonist throws the ball 4m/s with respect to himself, so it means that he gives the ball a extra push of 4m/s, so the total speed is 14m/s. Since it takes 30 seconds to reach the ground, the distance travelled is 14*30=420m.
7 0
2 years ago
A vertical spring of constant k = 400 N/m hangs at rest. When a 2 kg mass is attached to it, and it is released, the spring exte
Viefleur [7K]

Answer:

4.9 cm

Explanation:

From Hook's Law,

F = ke......................... Equation 1

Where F= force, e = extension, k = spring constant.

Note: the Force acting on the the spring is the weight of the mass.

W = mg.

F = mg.................... Equation 2

Where m = mass, g = acceleration due to gravity

Substitute equation 2 into equation 1

mg = ke

make e the subject of the equation

e = mg/k............... Equation 3.

Given: m = 2 kg, g = 9.8 m/s², k = 400 N/m

e = (2×9.8)/400

e = 19.6/400

e = 0.049 m

e = 4.9 cm

3 0
2 years ago
Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
kupik [55]
Yupp its c because my dad farted 
3 0
2 years ago
A 1.00-kilogram ball is dropped from the top of a building. just before striking the ground, the ball's speed is 12.0 meters per
Anarel [89]
During the fall, the potential energy stored in the ball is converted into kinetic energy.
Thus,
PE = KE before hitting the ground
= 1/2 • mv^2
= 1/2 • 1 • 12^2
= 72J
6 0
2 years ago
Other questions:
  • A car starts from rest and accelerates along a straight line path in one minute. It finally attains a velocity of 40 meters/seco
    6·1 answer
  • How high above the earth's surface is g reduced to 8.80m/^2?
    12·2 answers
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • A boy throws a steel ball straight up. consider the motion of the ball only after it has left the boy's hand but before it touch
    11·2 answers
  • Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
    10·2 answers
  • Mari places a marble at the top of a ramp and lets it go. It rolls down. At the bottom of the ramp, the marble bumps into a bloc
    7·2 answers
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • A 59.7 g piece of metal that had been submerged in boiling water was quickly transferred into 60.0 mL of water initially at 22.0
    14·1 answer
  • Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hour miles/hou
    5·2 answers
  • A hot air balloon must be designed to support a basket, cords, and one person for a total payload weight of 1300 N plus the addi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!