answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
2 years ago
12

A steel casting weighing 2 kg has an initial temperature of 500°c; 25 kg of water initially at 25°c is contained in a perfectly

insulated steel tank weighing 5 kg. the casting is immersed in the water and the system is allowed to come to equilibrium. what is its final temperature? ignore the effects of expansion or contraction, and assume constant specific heats of 4.18 kj⋅kg−1⋅°c−1 for water and 0.50 kj⋅kg−1⋅°c−1 for steel.
Physics
2 answers:
gayaneshka [121]2 years ago
5 0

Answer:

26.6C

Explanation:

Using an energy balance:

Decrease in internal energy of casting must lead to an increase in internal energy of the tank and water, assuming that no heat flows out of the tank - perfectly insulated.

m_{casting}*C_{p,casting}*(T_{casting} - T_{final})= m_{water}*C_{p,water}*(T_{final} - T_{water}) + m_{tank}*C_{p,tank}*(T_{final} - T_{tank})

2*0.5*(500 - T_{final})= 70*4.18*(T_{final} - 25) + 5*0.5*(T_{final} - 25)\\\\(1+2.5+292.6)*T_{final} = 500+7315+62.5\\\\T_{final} = 26.6C

SCORPION-xisa [38]2 years ago
3 0
<span> Plan: Use Q = m · c · ΔT three times. Hot casting cools ΔT_hot = 500°C - Tf. Cold water and steel tank heat ΔT_cold = Tf - 25°C. Set Q from hot casting cooling = Q from cold tank heating.
here
m_cast · c_steel · ΔT_hot = (m_tank · c_steel + m_water · c_water) · ΔT_cold

m_cast · c_steel · (500°C - Tf) = (m_tank · c_steel + m_water · c_water) · (Tf - 25°C)

2.5 kg · 0.50 kJ/(kg K°) · (500°C - Tf) = (5 kg· 0.50 kJ/(kg K°) + 40 kg· 4.18 kJ/(kg K°)) · (Tf - 25°C)

Solve for Tf, remember that K° = C° (i.e. for ΔT's) </span>
You might be interested in
A 150-N box is being pulled horizontally in a wagon accelerating uniformly at 3.00 m/s2. The box does not move relative to the w
Zepler [3.9K]

Answer:

Frictional force, F = 45.9 N

Explanation:

It is given that,

Weight of the box, W = 150 N

Acceleration, a=3\ m/s^2

The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.  

It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,

m=\dfrac{W}{g}

m=\dfrac{150}{9.8}

m=15.3\ kg

Frictional force is given by :

F=ma

F=15.3\times 3

F = 45.9 N

So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.

8 0
2 years ago
When light energy hits the retina, the retinal changes from a _____ to a _____ configuration.
gayaneshka [121]

Answer:

Cis, Trans.

Explanation:

Rhodopsin also known as visual purple, pigment which contains sensory protein that helps to convert light into an electrical signal. Rhodopsin present in wide range of organisms from bacteria to vertebrates.

Rhodopsin is composed of opsin, and 11-cis-retinaldehyde which is derived from vitamin A. When the eye contact with light the 11-cis component converted to all trans-retinal, which results in the changes in configuration fundamental in the rhodopsin molecule.

5 0
2 years ago
Two thin lenses with a focal length of magnitude 12.0cm, the first diverging and the second converging, are located 9.00cm apart
attashe74 [19]

Answer:

Explanation:

b ) First is concave lens with focal length f₁ = - 12 cm .

object distance u = - 20 cm .

Lens formula

1 / v - 1 / u = 1 / f

1 / v + 1 / 20 = -1 / 12

1 / v =  - 1 / 20  -1 / 12

= - .05 - .08333

= - .13333

v = - 1 / .13333

= - 7.5 cm

first image is formed before the first lens on the side of object.

This will become object for second lens

distance from second lens = 7.5 + 9 = 16.5 cm

c )

For second lens

object distance u = - 16.5 cm

focal length f₂ = + 12 cm ( lens is convex )

image distance = v

lens formula ,

1 / v - 1 / u = 1 / f₂

1 / v + 1 / 16.5 = 1 / 12

1 / v =   1 / 12 -  1 / 16.5

= .08333- .0606

= .02273

v = 1 /  .02273

= 44 cm ( approx )

It will be formed on the other side of convex lens

distance from first lens

= 44 + 9 = 53 cm .

magnification by first lens = v / u

= -7.5 / -20 = .375 .

magnification by second lens = v / u

= 44 / - 16.5

= - 2.67

d )

total magnification

= .375 x - 2.67

= - 1.00125

height of final image

= 2.50 mm x 1.00125

= 2.503mm

e )

The final image will be inverted with respect to object  because total magnification is negative .

6 0
2 years ago
Determine a formula for the maximum height h that a rocket will reach if launched vertically from the Earth's surface with speed
olga55 [171]

Initially, the energies are:

U_{i}=-\frac{G M_{\varepsilon} m}{r_{e}} \\&#10;=K_{i}=\frac{1}{2} m v_{0}^{2}

At final point, the energies are:

U_{f}=-\frac{G M_{\varepsilon} m}{r_{e}+h} \\&#10;K_{f}=\frac{1}{2} m(0)^{2}=0

Using conservation law of energy,

-\frac{G M_{e} m}{r_{e}}+\frac{1}{2} m v_{0}^{2} &=-\frac{G M_{e} m}{r_{\varepsilon}+h} \\&#10;-\frac{G M_{e}}{r_{e}}+\frac{v_{0}^{2}}{2} &=-\frac{G M_{e}}{r_{e}+h} \\&#10;\frac{-2 G M_{e}+r_{e} v_{0}^{2}}{2 r_{e}} &=-\frac{G M_{e}}{r_{e}+h} \\&#10;\frac{r_{e}+h}{G M_{e}} &=\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}

The equation is further simplified as:

r_{e}+h &=\left(\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}\right) G M_{e} \\&#10;h &=\frac{2 r_{e} G M_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}-r_{e} \\&#10;&=\frac{2 r_{e} G M_{e}-2 r_{e} G M_{e}+r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}} \\&#10;& h=\frac{r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}}

7 0
1 year ago
Approximately 1.000 g each of four gasses H2, Ne, Ar, and Kr are placed in a sealed container all under1.5 atm of pressure. Assu
Vera_Pavlovna [14]

Answer:

The partial pressure of H2 is 0.375 atm

The partial pressure of Ne is also 0.375 atm

Explanation:

Mass of H2 = 1 g

Mass of Ne = 1 g

Mass of Ar = 1 g

Mass of Kr = 1 g

Total mass of gas mixture = 1 + 1 + 1 + 1 = 4 g

Pressure of sealed container = 1.5 atm

Partial pressure of H2 = (mass of H2/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm

Partial pressure of Ne = (mass of Ne/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm

7 0
2 years ago
Other questions:
  • A 5.8 × 104-watt elevator motor can lift a total weight of 2.1 × 104 newtons with a maximum constant speed of
    12·1 answer
  • If a neutral object such as paper comes close to a positively charged plastic rod, what type of charge accumulates on the side o
    14·2 answers
  • Pamela drove her car 999999 kilometers and used 999 liters of fuel. she wants to know how many kilometers (k)(k)left parenthesis
    7·1 answer
  • Often what one expects to see influences what is perceived in the surrounding environment. Please select the best answer from th
    5·2 answers
  • The gamma photons created during a PET scan are detected when they encounter a scintillator and produce a burst of light. This l
    11·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • A radioactive substance decays exponentially. A scientist begins with 200 milligrams of a radioactive substance. After 17 hours,
    10·1 answer
  • A 12 kg box sliding on a horizontal floor has an initial speed of 4.0 m/s. The coefficient of friction bctwecn thc box and the f
    6·1 answer
  • Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure
    8·1 answer
  • The distance between twin satellites that were originally 150 meters apart are now 300 meters apart. Which best describes the gr
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!