Answer:
Frictional force, F = 45.9 N
Explanation:
It is given that,
Weight of the box, W = 150 N
Acceleration, 
The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.
It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,



Frictional force is given by :


F = 45.9 N
So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.
Answer:
Cis, Trans.
Explanation:
Rhodopsin also known as visual purple, pigment which contains sensory protein that helps to convert light into an electrical signal. Rhodopsin present in wide range of organisms from bacteria to vertebrates.
Rhodopsin is composed of opsin, and 11-cis-retinaldehyde which is derived from vitamin A. When the eye contact with light the 11-cis component converted to all trans-retinal, which results in the changes in configuration fundamental in the rhodopsin molecule.
Answer:
Explanation:
b ) First is concave lens with focal length f₁ = - 12 cm .
object distance u = - 20 cm .
Lens formula
1 / v - 1 / u = 1 / f
1 / v + 1 / 20 = -1 / 12
1 / v = - 1 / 20 -1 / 12
= - .05 - .08333
= - .13333
v = - 1 / .13333
= - 7.5 cm
first image is formed before the first lens on the side of object.
This will become object for second lens
distance from second lens = 7.5 + 9 = 16.5 cm
c )
For second lens
object distance u = - 16.5 cm
focal length f₂ = + 12 cm ( lens is convex )
image distance = v
lens formula ,
1 / v - 1 / u = 1 / f₂
1 / v + 1 / 16.5 = 1 / 12
1 / v = 1 / 12 - 1 / 16.5
= .08333- .0606
= .02273
v = 1 / .02273
= 44 cm ( approx )
It will be formed on the other side of convex lens
distance from first lens
= 44 + 9 = 53 cm .
magnification by first lens = v / u
= -7.5 / -20 = .375 .
magnification by second lens = v / u
= 44 / - 16.5
= - 2.67
d )
total magnification
= .375 x - 2.67
= - 1.00125
height of final image
= 2.50 mm x 1.00125
= 2.503mm
e )
The final image will be inverted with respect to object because total magnification is negative .
Initially, the energies are:

At final point, the energies are:

Using conservation law of energy,
The equation is further simplified as:

Answer:
The partial pressure of H2 is 0.375 atm
The partial pressure of Ne is also 0.375 atm
Explanation:
Mass of H2 = 1 g
Mass of Ne = 1 g
Mass of Ar = 1 g
Mass of Kr = 1 g
Total mass of gas mixture = 1 + 1 + 1 + 1 = 4 g
Pressure of sealed container = 1.5 atm
Partial pressure of H2 = (mass of H2/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm
Partial pressure of Ne = (mass of Ne/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm