Answer:
a) the values of the angle α is 45.5°
b) the required magnitude of the vertical force, F is 41 lb
Explanation:
Applying the free equilibrium equation along x-direction
from the diagram
we say
∑Fₓ = 0
Pcosα - 425cos30° = 0
525cosα - 368.06 = 0
cosα = 368.06/525
cosα = 0.701
α = cos⁻¹ (0.701)
α = 45.5°
Also Applying the force equation of motion along y-direction
∑Fₓ = ma
Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)
525sin45.5° + F + 212.5 - 600 = 27.95
374.46 + F + 212.5 - 600 = 27.95
F - 13.04 = 27.95
F = 27.95 + 13.04
F = 40.99 ≈ 41 lb
Answer:
F₁ = F₂ = F₃ = 0 N
Explanation:
given,
Arrow 1 mass = 80 g speed = 10 m/s
Arrow 2 mass = 80 g speed = 9 m/s
Arrow 3 mass = 90 g speed = 9 m/s
Horizontal Force:- F₁ , F₂ and F₃
There is no air resistance.
If Air resistance is zero then the horizontal acceleration of the arrow also equal to zero.
We know,
According to newton's second law
F = m a
If Acceleration is equal to zero
Then Force is also equal to zero.
Hence, F₁ = F₂ = F₃ = 0 N
Answer:
C = 3.77*10⁻¹⁰ F = 377 pF
Q = 1.13*10⁻⁵ C
Explanation:
Given
D = 8.0 cm = 0.08 m
d = 0.95 cm = 0.95*10⁻² m
k = 80.4 (dielectric constant of the milk)
V = 30000 V
C = ?
Q = ?
We can get the capacitance of the system applying the formula
C = k*ε₀*A / d
where
ε₀ = 8.854*10⁻¹² F/m
and A = π*D²/4 = π*(0.08 m)²/4
⇒ A = 0.00502655 m²
then
C = (80.4)*(8.854*10⁻¹² F/m)*(0.00502655 m²) / (0.95*10⁻² m)
⇒ C = 3.77*10⁻¹⁰ F = 377 pF
Now, we use the following equation in order to obtain the charge on each plate when they are fully charged
Q = C*V
⇒ Q = (3.77*10⁻¹⁰ F)*(30000 V)
⇒ Q = 1.13*10⁻⁵ C
Answer:

Explanation:
F = Force = 
E = Electric field = 
Force is given by




The charge on the particle is 
<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters.
Let's calculate the time for the ball to fall 235 meters to the ground.
y = (1/2)gt^2
t^2 = 2y / g
t = sqrt{ 2y / g }
t = sqrt{ (2) (235 m) / (9.81 m/s^2) }
t = 6.9217 s
We can use the time t to find the horizontal speed.
v = d / t
v = 235 m / 6.9217 s
v = 33.95 m/s
Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>