Answer:
R = 0.0503 m
Explanation:
This is a projectile launching exercise, to find the range we can use the equation
R = v₀² sin 2θ / g
How we know the maximum height
² =
² - 2 g y
= 0
= √ 2 g y
= √ 2 9.8 / 15
= 1.14 m / s
Let's use trigonometry to find the speed
sin θ =
/ vo
vo =
/ sin θ
vo = 1.14 / sin 60
vo = 1.32 m / s
We calculate the range with the first equation
R = 1.32² sin(2 60) / 30
R = 0.0503 m
Velocity =
(distance between start point and end point, regardless of the route traveled) / (time spent traveling).
That distance (called the "displacement"), is 10 meters, and almost exactly 1 hour is almost exactly 3,600 seconds. So the numerical value of the velocity during that time is
(10) / (3,600) = almost exactly 0.00278 m/s
= 2.78 x 10^-3 m/s.
Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.
Answer:
D
Explanation:
Speed = distance / time
her time for the first journey = 20 miles / 60 miles/hr = 1/3 hr
her time for second part of the journey = her remaining distance / her speed = (80 - 20) miles / 30 miles/hr = 60 miles / 30 miles/hr = 2 hrs
total time spend by her = 2 hr+ 1/3 hr = 2 1/3 hrs
her traveling the distance at 40 miles per hour = 80 miles / 40 miles /hr = 2 hrs
the time less she would drive if she drive the entire distance at 40 miles/hr = 2 1/3 hrs - 2 hrs = 1/3 hr
As we know by the formula of bulk modulus

now we can rearrange it as


now the final volume after pressure is applied is given as

now we know that



now plug in all data


so volume is above after pressure is applied over it