answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
1 year ago
8

You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af

ter a bad storm some leaves settled on part of the track causing a 9.4-m length of the track to exert a frictional force of 625 n on the car. to safely make it around the loop, the 50-kg car must have a minimum speed of 7.7 m/s at the top of the loop (point b). how fast should the car be moving initially at point a to ensure that it reaches the top of the loop with the minimum required speed?

Physics
2 answers:
nalin [4]1 year ago
8 0

Answer:

speed at initial point A must be v = 6.3 m/s

Explanation:

Here we know that the speed of car at point B must be 7.7 m/s

now by energy conservation we know that total mechanical energy at point B is given as

E_2 = \frac{1}{2}mv_2^2 + mgh_2

E_2 = \frac{1}{2}(50)(7.7)^2 + (50)(9.8)(12)

E_2 = 7362.25 J

Now let say the initial speed at point A is v so initial total energy is given as

E_1 = \frac{1}{2}m_1v_1^2 + mgh_1

E_1 = \frac{1}{2}(50)v_1^2 + (50)9.8(25)

E_1 = 25v_1^2 + 12250

now we know that here energy is lost due to friction which is given by work done by the friction

W_f = f.d

W_f = (625)(9.4) = 5875J

now we know that

energy loss = E1 - E2

5875 = (25 v_1^2 + 12250) - 7362.25

by solving above equation we have

v_1 = 6.3 m/s

djyliett [7]1 year ago
4 0
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.
A: mgh_1+\frac{mv_1^2}{2}
Then, while the car is traveling down the track it loses some of its initial energy due to friction:
W_f=F_f\cdot L
So, we know that the car is approaching the point B with the following amount of energy:
mgh_1+\frac{mv_1^2}{2}- F_fL
The law of conservation of energy tells us that this energy must the same as the energy at point B. 
The energy at point B is the sum of car's kinetic and potential energy:
B: mgh_2+\frac{mv_2}{2}
As said before this energy must be the same as the energy of a car approaching the loop:
mgh_2+\frac{mv_2}{2}=mgh_1+\frac{mv_1^2}{2}- F_fL
Now we solve the equation for v_1:
v_1^2=2g(h_2-h_1)+v_2^2+\frac{2F_fL}{m}\\
v_1^2=39.23\\
v_1=\sqrt{39.23}=6.26\frac{m}{s}

You might be interested in
The electric field near the earth's surface has magnitude of about 150n/c. what is the acceleration experienced by an electron n
qaws [65]
Felectric = q*E 
<span> Ftranslational = m*a 
</span><span> Felectric = Ftranslational
</span> <span>q*E = m*a 
</span><span> Solve for a 
</span><span> a = q/m*E </span>
<span> Our sign convention is "up is positive" 
</span><span> q = 1.6*10^-19 C 
</span><span> m = 1.67*10^-27 kg 
</span><span> E = -150 N/C (- because it is down and up is positive) 
</span> a =<span> -6,4*10^5</span><span> m/s^2 (downward) 
</span> answer
 a = -6,4*10^5 m/s^2 (downward) 
3 0
1 year ago
A monoatomic ideal gas undergoes an isothermal expansion at 300 K, as the volume increased from 0.010 m^3 to 0.040 m^3. The fina
Natali [406]

Answer:

A) 0.0 kJ

Explanation:

Change in the internal energy of the gas is a state function

which means it will not depends on the process but it will depends on the initial and final state

Also we know that internal energy is a function of temperature only

so here the process is given as isothermal process in which temperature will remain constant always

here we know that

\Delta U = \frac{3}{2}nR\Delta T

now for isothermal process since temperature change is zero

so change in internal energy must be ZERO

4 0
1 year ago
A teacher sets up a stand carrying a convex lens of focal length 15 cm at 20.5 cm mark on the optical bench. She asks the studen
Brums [2.3K]
We get the clearest image if there is no magnification. When we have no magnification the image and real object have the same size.
If we look at the diagram that I  attached we can see that:
\frac{h_i}{h_0}=\frac{d_i}{d_0}
Two triangles that I marked are similar and from this we get:
\frac{h_i}{h_0}=\frac{d_i-f}{f}
The image and the object must have the same height so we get:
\frac{h_i}{h_0}=\frac{d_i-f}{f};h_i=h_0\\&#10;1=\frac{d_i-f}{f}\\&#10;d_i=2f
This tells how far the screen should be from the lens. 
The position of the screen on the optical bench is:
S=20.5cm+2f=20.5+2\cdot 15cm=50.5cm

8 0
1 year ago
You drop your keys in a high-speed elevator going up at a constant speed. Part APart complete Do the keys accelerate faster towa
anzhelika [568]

Answer:

Explained

Explanation:

a) No, the keys were initially moving upward in the elevator only effects the initial velocity of the key and not the rate of change of velocity that is acceleration. So, the keys accelerate with the same acceleration as before.

b)Yes, keys will accelerate towards the floor faster if it is a constant speed than it is moving downward because if the elevator is accelerating downward, the downward change in velocity of the keys is at least partially matched by a downward change in the velocity of the of the elevator.

5 0
1 year ago
1. A2 .7-kg copper block is given an initial speed of 4.0m/s on a rough horizontal surface. Because of friction, the block final
tatyana61 [14]

Answer:

A. Increase in temperature is 0.0176 degree Celsius. b. the remaining energy will be lost.

Explanation:

The mass of copper block = 7kg

Initial speed = 4.0 m/s

Specific heat of copper = 0.385 j/g degree Celcius.

a. The increase in temperature is calculated below:

\text{Change in kinetic energy} = \frac{1}{2}mv^{2} \\=  \frac{1}{2} \times 2.7 \times 4^{2} = 21.6 J \\

85% of energy is converted into internal energy.

mc\DeltaT = 21.6 \times 0.85 \\2.7 \times 385 \times \Delta T = 21.6 \times 0.85 \\\Delta T = 0.0176 degree \ celsius

b. The remaining  15 per cent of kinetic energy will be lost and it will be changed into other forms.

7 0
1 year ago
Other questions:
  • jack wants to find out which laundry detergent cleans the best ( Gain, Tide, or Purex). So, he takes a cotton sheet and cuts it
    11·2 answers
  • Any ferrous metal object within or near the mri magnet has the potential of becoming a projectile. this is commonly referred to
    6·1 answer
  • The space shuttle is descending through the earth's atmosphere. How is the force of gravity affected?
    9·2 answers
  • The mass of the Sun is 2 × 1030 kg, and the distance between Neptune and the Sun is 30 AU. What is the orbital period of Neptune
    10·1 answer
  • A 0.80-μm-diameter oil droplet is observed between two parallel electrodes spaced 11 mm apart. The droplet hangs motionless if t
    13·1 answer
  • A vibrating standing wave on a string radiates a sound wave with intensity proportional to the square of the standing-wave ampli
    15·1 answer
  • When a test charge q0 = 2 nC is placed at the origin, it experiences a force of 8 times 10-4 N in the positive y direction. What
    11·1 answer
  • The block in the diagram below is AT REST. However, the tension in the cable is not the only thing holding the block back. Stati
    6·1 answer
  • A vehicle traveling on wet or slick roads can begin to _________ as water forms a barrier between the road and the tires and tra
    5·2 answers
  • An amusement park ride consists of airplane-shaped cars attached to steel rods. Each rod has a length of 15m and a cross-section
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!