answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
1 year ago
8

A force is applied to a block sliding along a surface (Figure 2). The magnitude of the force is 15 N, and the horizontal compone

nt of the force is 4.5 N. At what angle (in degrees) above the horizontal is the force directed?

Physics
2 answers:
patriot [66]1 year ago
4 0

If I have done my math correctly, your answer is 67.5

denpristay [2]1 year ago
3 0

Explanation:

It is given that,

The magnitude of force applied force on the block is, F = 15 N

The horizontal component of the force, F_x=4.5\ N

We need to find the angle (in degrees) above the horizontal is the force directed. The horizontal component of the force is given by :

F_x=F\ cos\theta

4.5=15\ cos\theta    

\theta=cos^{-1}(\dfrac{4.5}{15})

\theta=72.54^{\circ}

So, the angle above the horizontal force and the surface is 72.54 degrees. Hence, this is the required solution.

You might be interested in
Whennes
rodikova [14]

Answer:

See the explanation below.

Explanation:

12) When an object is falling, how does the objects velocity change? what formula do you use?

The speed of a falling object is increased by a value of 9.81 meters per second per second. That is if we throw any body regardless of mass from a considerable height, its speed in the first second will be 9.81[ m/ s] , in the next second will be equal to 19.62 [m/s] in the next will be equal to 29.43 [m/ s].

The formula is:

v=v_{0}+g*t

where:

vo = initial velocity = 0

g = gravity = 9.81[m/s^2]

t = time [s]

13)

what is a falling speed at 6s, 9s, 112s?

v = 0 + (9.81*6) = 58.86[m/s]

v = 0 + (9.81*9) = 88.29 [m/s]

v = 0 + (9*112) = 1098.72 [m/s]

14)

If an object is falling at 65 [m/s]. How long has it been falling ? what is the formula that you use?

The formula is the same:

v=v_{o}+g*t

65 = 0 + 9.81*t

t = 65/9.81

t = 6.62[s]

15)

What formula is used to determine the distance an object is falling ?

y = y_{o}+v_{o}*t + 0.5*9.81*t^{2}

where:

y = distance [m]

yo = initial distance, in most of the cases and depending of the reference point it will be eqaul to zero

vo = initial velocity, if it is free fall, then = 0

t = time [s]

g = gravity = 9.81[m/s^2]

This equation will be reduce to:

y =   0.5*g*t^{2}

16)

using the times given in problem 13. Determine the distance fallen for each.

y = 0.5*9,81*(6)^2 = 176.58 [m]

y = 0.5*9,81*(9)^2 = 397.3 [m]

y = 0.5*9,81*(112)^2 = 61528.3 [m]

17)

If an object has fallen a distance of 87.3 [m]. How long was it falling?

87.3 = 0.5*9.81*t^2

t=\sqrt{\frac{87.3}{0.5*9.81} }\\ t=4.21[s]

4 0
2 years ago
Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
Sonbull [250]
The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.

A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?

The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.

I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.

B <<<<====== answer. 
5 0
2 years ago
Read 2 more answers
A certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of What is the
Alborosie

Answer:

<em>0.45 mm</em>

Explanation:

The complete question is

a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?

A) 0.45 mm

B) 0.63 mm

C.) 0.68 mm

D) 0.91 mm

Current in the fuse is 1.0 A

Current density of the fuse when it melts is 620 A/cm^2

Area of the wire in the fuse = I/ρ

Where I is the current through the fuse

ρ is the current density of the fuse

Area = 1/620 = 1.613 x 10^-3 cm^2

We know that 10000 cm^2 = 1 m^2, therefore,

1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2

Recall that this area of this wire is gotten as

A = \frac{\pi d^{2} }{4}

where d is the diameter of the wire

1.613 x 10^-7 = \frac{3.142* d^{2} }{4}

6.448 x 10^-7 = 3.142 x d^{2}

d^{2} =\sqrt{ 2.05*10^-7}

d = 4.5 x 10^-4 m = <em>0.45 mm</em>

8 0
1 year ago
The air in a 6.00 L tank has a pressure of 2.00 atm. What is the final pressure, in atmospheres, when the air is placed in tanks
ser-zykov [4K]

Explanation:

Given that,

Initial volume of tank, V = 6 L

Initial pressure, P = 2 atm

We need to find the final pressure when the air is placed in tanks that have the following volumes if there is no change in temperature and amount of gas:

(a) V' = 1 L

It is a case of Boyle's law. It says that volume is inversely proportional to the pressure at constant temperature. So,

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{1}\\\\P'=12\ atm

(b) V' = 2500 mL

New pressure becomes :

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{2500\times 10^{-3}}\\\\P'=4.8\ atm

(c) V' = 750 mL

New pressure becomes :

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{750\times 10^{-3}}\\\\P'=16\ atm

(d) V' = 8 L

New pressure becomes :

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{8}\\\\P'=1.5\ atm

Hence, this is the required solution.

3 0
1 year ago
In Burglar alarm LDR acts as a/an<br> a. off switch<br> b. on switch<br> c. AND gate<br> d. OR gate
Gelneren [198K]

In Burglar alarm, LDR acts an AND gate.

Answer: C

Explanation

The LDR is light dependent resistor. The principle used in the working of LDR is that the resistance is inversely proportional to the intensity of light falling on the diode.

In burglar alarm, LDR diode is combined with an IC 555.

Normally an LED source is made to be incident on the LDR diode with same intensity such that the resistance will be maintained constant.

As the LDR is connected with IC, the voltage will be high when light is falling on the diode.

The IC will give only two output states that is high and low. This confirms that LDR in burglar alarm act as AND gate.

As the thief enters and crosses the LED light, the intensity of the light falling on the diode will decrease leading to decrease in the voltage which will cause the alarm to beep.

4 0
1 year ago
Other questions:
  • A person's height will increase from birth until about age 25, and it may decrease starting at about age 70. This is an example
    6·2 answers
  • A brick of mass 2 kg is dropped from a rest position 5 m above the ground. what is its velocity at a height of 3 m above the gro
    15·1 answer
  • A force is applied to a block sliding along a surface (Figure 2). The magnitude of the force is 15 N, and the horizontal compone
    8·2 answers
  • A child pulls a wagon at a constant velocity along a level sidewalk. The child does this by applying a 22 newton force to the wa
    8·1 answer
  • A rock is thrown straight up with an initial velocity of 19.6 m/s. What time interval elapses between the rock’s being thrown an
    14·2 answers
  • A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the mass of the
    15·1 answer
  • Points A, B, and C are at the corners of an equilateral triangle of side 8 m. Equal positive charges of 4 mu or micro CC are at
    11·1 answer
  • Magnus has reached the finals of a strength competition. In the first round, he has to pull a city bus as far as he can. One end
    9·1 answer
  • 1. Do alto de uma plataforma com 15m de altura, é lançado horizontalmente um projéctil. Pretende-se atingir um alvo localizado n
    9·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!