answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
2 years ago
9

Magnus has reached the finals of a strength competition. In the first round, he has to pull a city bus as far as he can. One end

of a rope is attached to the bus and the other is tied around Magnus's waist. If a force gauge placed halfway down the rope reads out a constant 2750 2750 Newtons while Magnus pulls the bus a distance of 1.60 1.60 meters, how much work does the tension force do on Magnus? The rope is perfectly horizontal during the pull.

Physics
1 answer:
iragen [17]2 years ago
7 0

Answer:

The workdone is  W_d =-4400J

Explanation:

The free body diagram is shown on the first uploaded image

From the question we are given that

            The force is on the force gauge  F = 2750 N

             The distance that Magnus pulled the bus  d = 1.60m

Generally  the workdone by the tension force on Magnus is

                  Workdone = Force * displacement \ in \ the \ direction \ of \ force

                     W_d = F * (-d)

This negative sign show that is tension force  is in the opposite direction to Magnus movement (i.e the movement of the bus )

Substituting value we have

                   Workdone  =  - 2750 * 1.60

                                     =-4400 J

You might be interested in
Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
dimaraw [331]
When looking at it from a physics standpoint, the thick padding decreases the amount of force that a player experiences. Force equals mass times acceleration where acceleration is distance over time. The thick padding increases the amount of time the player makes contact with the post which decreases force.
8 0
2 years ago
Read 2 more answers
Compare these two collisions of a PE student with a wall.
Stolb23 [73]

1) The variable that is different in the two cases is \Delta t, the duration of the collision

2) The change in momentum is the same in the two cases

3) The impulse is the same in the two cases

4) Case B will experience a greater force

Explanation:

1)

The variable that is different in the two cases is \Delta t, the duration of the collision.

In fact, in the first case the wall is padded: this means that the collision will be "softer" and therefore will last longer, so the duration of the collision, \Delta t, will be larger.

In the second case instead, the wall is unpadded: this means that the collision is "harder" and so it will last less time, therefore the duration of the collision \Delta t will be smaller.

2)

The change in momentum in the two cases is the same.

In fact, the change in momentum is given by:

\Delta p = m(v-u)

where:

m is the mass of the student

u is the initial velocity

v is the final velocity

In both cases, we have:

m = 75 kg

u = 8 m/s

v = 0 (they both comes to rest)

Therefore, the change in momentum is

\Delta p = (75)(0-8)=-600 kg m/s

3)

The impulse in the two cases is the same.

In fact, impulse is defined as the product of force applied, F, and duration of the collision, \Delta t:

J=F \Delta t

However, the force can be rewritten as product of mass (m) and acceleration (a), according to Newton's second law:

F=ma

So the impulse is

J=ma\Delta t

The acceleration can be rewritten as rate of change of velocity:

a=\frac{\Delta v}{\Delta t}

So the impulse becomes

J=m\frac{\Delta v}{\Delta t}\Delta t = m\Delta v

So, the impulse is equal to the change in momentum: and since in the two cases the change in momentum is the same, the impulse is the same as well.

4)

The force in the collision is related to the impulse by

J=F\Delta t

where

J is the impulse

F is the force

\Delta t is the duration of the collision

The equation can be rewritten as

F=\frac{J}{\Delta t}

In the two situations described in the problem (A and B), we already said that the impulse is the same (because the change in momentum is the same). However, in case A (padded wall) the time \Delta t is longer, while in case B (unpadded wall) the time \Delta t is shorter: since the force F is inversely proportional to the duration of the collision, this means that in case B the student will experience a greatest force compared to case A.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

3 0
2 years ago
A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
olga_2 [115]

Answer:

His acceleration is \overrightarrow{a}=4\frac{m}{s^{2}}

Explanation:

Newton's second law states that acceleration of a body is cause by a net force, the relation between them is:

\sum\overrightarrow{F}=m\overrightarrow{a}

On the boy there're acting two forces, his weight (W) that points downward and the frictional force (f) that points upward (they boy moves downward and friction always is opposite to movement). So \sum\overrightarrow{F}=\overrightarrow{W}+\overrightarrow{f} so (1) is:

\overrightarrow{W}+\overrightarrow{f}=m\overrightarrow{a}

Using the positive direction downward weight and gravitational acceleration(g) are positive and friction force is negative:

W-f=m\overrightarrow{a}, solving for a:

\overrightarrow{a}=\frac{W-f}{m}, weight is mg:

\overrightarrow{a}=\frac{mg-f}{m}=\overrightarrow{f}=\frac{(80kg)(10\frac{m}{s^{2}})-(480)}{80}

\overrightarrow{a}=4\frac{m}{s^{2}}

6 0
2 years ago
7. Imagine you are pushing a 15 kg cart full of 25 kg of bottled water up a 10o ramp. If the coefficient of friction is 0.02, wh
pentagon [3]

Answer:

The frictional force needed to overcome the cart is 4.83N

Explanation:

The frictional force can be obtained using the following formula:

F= \mu R

where \mu is the coefficient of friction = 0.02

R = Normal reaction of the load = mgcos\theta = 25 \times 9.81 \times cos 10 = 241.52N

Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F=0.02 \times 241.52N

F = 4.83 N

Hence, the frictional force needed to overcome the cart is 4.83N

4 0
2 years ago
An actor who memorizes his lines word-for-word has demonstrated _____ learning.
Nana76 [90]
<span>Mechanical association learning used by an actor to memorize his lines</span>
8 0
2 years ago
Read 2 more answers
Other questions:
  • Ashley made a paper boat and attached paperclips to the edges. In order to control her boat she used a horseshoe magnet. How is
    6·2 answers
  • The power of a red laser (λ = 630 nm) is 3.25 watts (abbreviated w, where 1 w = 1 j/s). how many photons per second does the las
    9·1 answer
  • You know that you sound better when you sing in the shower. This has to do with the amplification of frequencies that correspond
    9·1 answer
  • Your heart pumps blood at a pressure of 100 mmHg and flow speed of 60 cm/s. At your brain, the blood enters capillaries with suc
    14·1 answer
  • A simple harmonic wave of wavelength 18.7 cm and amplitude 2.34 cm is propagating along a string in the negative x-direction at
    7·1 answer
  • An astronaut is in equilibrium when he is positioned 140 km from the center of asteroid C and 581 km from the center of asteroid
    6·1 answer
  • The two particles are both moving to the right. Particle 1 catches up with particle 2 and collides with it. The particles stick
    9·1 answer
  • A rocket train car that is 30 m long is traveling from Los Angeles to New York at v=0.5c when a light at the center of the car f
    11·1 answer
  • the amplitude of an oscillator decreases to 36.8% of its initial value in 10.0 s. what is the value of the time constant
    11·1 answer
  • A rocket lifts a payload upward from the surface of Earth. The radius of Earth is R, and the weight of the payload on the surfac
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!