Answer:
R = 0.0503 m
Explanation:
This is a projectile launching exercise, to find the range we can use the equation
R = v₀² sin 2θ / g
How we know the maximum height
² =
² - 2 g y
= 0
= √ 2 g y
= √ 2 9.8 / 15
= 1.14 m / s
Let's use trigonometry to find the speed
sin θ =
/ vo
vo =
/ sin θ
vo = 1.14 / sin 60
vo = 1.32 m / s
We calculate the range with the first equation
R = 1.32² sin(2 60) / 30
R = 0.0503 m
Anything that's not supported and doesn't hit anything, and
doesn't have any air resistance, gains 9.8 m/s of downward
speed every second, on account of gravity. If it happens to
be moving up, then it loses 9.8 m/s of its upward speed every
second, on account of gravity.
(64.2 m/s) - [ (9.8 m/s² ) x (1.5 sec) ]
= (64.2 m/s) - [ 14.7 m/s ]
= 49.5 m/s . (upward)
Answer:
Kathmandu
Explanation:
As the altitude get higher, the gravitational pull of the earth on the object increases, therefore, the mass is higher up above.
Answer:
15,505 N
Explanation:
Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student
-ΔU = ΔK
-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²
-(0 - mgh) = 1/2mv² - 0
mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.
mgh = 1/2mv²
gh = 1/2v²
v² = 2gh
v = √(2gh)
v = √(2 × 9.8 m/s² × 1 m)
v = √(19.6 m²/s²)
v = 4.43 m/s
Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s
So Ft = m(v' - v)
F = m(v' - v)/t
substituting the values of the variables, we have
F = 70 kg(0 m/s - 4.43 m/s)/0.02 s
= 70 kg(- 4.43 m/s)/0.02 s
= -310.1 kgm/s ÷ 0.02 s
= -15,505 N
So, the force transmitted to her bones is 15,505 N