First, before determining which variable is which, we go over the definition of each.
The independent variable is the one which is intentionally changed in order to investigate its effect on the dependent variable.
The dependent variable is monitored and changes occur in it due to the changing conditions of the independent variable.
In this case, the location of the African violets is the independent variable as it is intentionally changed, while the rate of growth of the African violets is the dependent variable as it is being measured.
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
The one that is loaded worst. The overall weight is not important; tongue weight is a matter of loading. Our 12,000 lb snow cat trailer, which has stops to position the cat properly, has under 100 lbs tongue weight. Excessive tongue weight is a Bad Thing because it reduces weight on the towing vehicle's front wheels, leading to instability.
Answer:
28.6260196842 m
Explanation:
Let h be the height of the building
t = Time taken by the watermelon to fall to the ground
Time taken to hear the sound is 2.5 seconds
Time taken by the sound to travel the height of the cliff = 2.5-t
Speed of sound in air = 340 m/s
For the watermelon falling

For the sound
Distance = Speed × Time

Here, distance traveled by the stone and sound is equal


The time taken to fall down is 2.4158 seconds

Height of the buidling is 28.6260196842 m
Answer:
Explanation:
Change in gravitational energy of the ball = mgh
5 mutiply 10 multiply 1.7 = 85J
Potential energy at height = Kinetic energy at bottom
KE= 85J
Velocity
v=5.83m/s