answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erma4kov [3.2K]
1 year ago
13

Steel blocks A and B, which have equal masses, are at TA = 300 oC and T8 = 400 oC. Block C, with mc - 2mA, is at TC = 350 oC. Bl

ocks A and B are placed in contact, isolated, and allowed to come into equilibrium. Then they are placed in contact with block C. At that instant:a.TA = TB < TCb.TA = TB = TCc.TA = TB > TCd.TA + TB = TCe.TA - TB = TC
Physics
1 answer:
shepuryov [24]1 year ago
8 0

Answer:

b) TA = TB = TC

Explanation:

  • When put in contact each other, and isolated, both blocks will exchange heat till they reach to thermal equilibrium.
  • During this process, the body at a higher temperature, will loss heat, tat it will be gained by the other body.
  • The equilibrium condition will be reached when the following equation be met:

       \Delta Q = c_{st}* m_{A} * (T_{fin}  - T_{0A} ) = c_{st}* m_{B} * (T_{0B}  - T_{fin} )

  • Replacing by the values of T₀A = 300º C, and T₀B = 400ºC, and simplifying common terms as mA = mB, we can solve for  Tfin, as follows:

       (400 \ºC - T_{fin}) = (T_{fin} - 300 \ºC) \\ \\  2* T_{fin} = 700\ºC\\ \\ T_{fin} = 350\ºC

  • So, when both blocks reach to equilibrium, they will be at a common final temperature, 350ºC.
  • When put in contact with block C, at the same temperature, at that instant, the three blocks will have the same common temperature of 350 ºC.
  • So, option b) is the right one.
You might be interested in
An object begins at position x = 0 and moves one-dimensionally along the x-axis witļi a velocity v
Liula [17]

Answer:

The answer is "between 20 s and 30 s".

Explanation:

Calculating the value of positive displacement:

\ (x_{+ve}) = \frac{1}{2} \times 15 \times  20 \\\\

          = \frac{1}{2} \times 300 \\\\=  150 \\\\

Calculating the value of negative displacement upon the time t:

(x_{-ve}) = \frac{1}{2} \times 5 \times 20- 20(t-20) \\\\

          = \frac{1}{2} \times 100- 20t+ 400 \\\\= 50- 20t+ 400 \\\\

\to X= X_{+ve} + X_{-ve} \\\\

\to  150 - 50 -20t+400 =0\\\\\to 100 -20t+400 =0 \\\\\to 500 -20t =0\\\\\to 20t =500 \\\\\to t=\frac{500}{20}\\\\\to t=\frac{50}{2}\\\\\to t= 25

That's why its value lie in "between 20 s and 30 s".

6 0
2 years ago
A race car has a maximum speed of 0.104 km/s .What is this speed in miles per hour ?
sweet [91]

Answer:

232.641374 mph

Explanation:

A race car has a maximum speed of 0.104km/s

Let X represent the speed in miles per hour

Therefore the speed in miles per hour can be calculated as follows

1 km/s = 2,236.936292 mph

0.104km/s = X

X = 0.104 × 2,236.936292

X = 232.641374

Hence the speed in miles per hour is 232.641374 mph

8 0
1 year ago
A police officer draws a sketch of the scene of an accident, as shown.
iren2701 [21]
I would have to say that it is Y
5 0
1 year ago
Read 2 more answers
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C.
MakcuM [25]

Answer:

b. 9.5°C

Explanation:

m_i = Mass of ice = 50 g

T_i = Initial temperature of water and Aluminum = 30°C

L_f = Latent heat of fusion = 3.33\times 10^5\ J/kg^{\circ}C

m_w = Mass of water = 200 g

c_w = Specific heat of water = 4186 J/kg⋅°C

m_{Al} = Mass of Aluminum = 80 g

c_{Al} = Specific heat of Aluminum = 900 J/kg⋅°C

The equation of the system's heat exchange is given by

m_i(L_f+c_wT)+m_wc_w(T-T_i)+m_{Al}c_{Al}=0\\\Rightarrow 0.05\times (3.33\times 10^5+4186\times T)+0.2\times 4186(T-30)+0.08\times 900(T-30)=0\\\Rightarrow 1118.5T-10626=0\\\Rightarrow T=\dfrac{10626}{1118.5}\\\Rightarrow T=9.50022\ ^{\circ}C

The final equilibrium temperature is 9.50022°C

4 0
2 years ago
Wrapping paper is being unwrapped from a 5.0-cm radius tube, free to rotate on its axis. if it is pulled at the constant rate of
lisov135 [29]
So the equation for angular velocity is

Omega = 2(3.14)/T

Where T is the total period in which the cylinder completes one revolution.

In order to find T, the tangential velocity is

V = 2(3.14)r/T

When calculated, I got V = 3.14

When you enter that into the angular velocity equation, you should get 2m/s
5 0
2 years ago
Other questions:
  • Determine the cutting force f exerted on the rod s in terms of the forces p applied to the handles of the heavy-duty cutter.
    11·2 answers
  • The theory of plate tectonics describes this process as a gradual movement of the tectonic plates across the Earth’s lithosphere
    5·2 answers
  • It takes 87 j of work to stretch an ideal spring, initially 1.4 m from equilibrium, to a position 2.9 m from equilibrium. what i
    13·1 answer
  • Imagine that you are sitting in a closed room (no windows, no doors) when, magically, it is lifted from Earth and sent accelerat
    14·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.
    10·1 answer
  • Fiona and her twin sister April are enjoying the bumper cars at an amusement park. Fiona drives her car toward her sisters and t
    13·1 answer
  • A 26 foot ladder is lowered down a vertical wall at a rate of 3 feet per minute. The base of the ladder is sliding away from the
    10·1 answer
  • A skier is moving down a snowy hill with an acceleration of 0.40 m/s2. The angle of the slope is 5.0∘ to the horizontal. What is
    12·1 answer
  • ery large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge
    8·1 answer
  • Like all planets, the planet Venus orbits the Sun in periodic motion and simultaneously spins about its axis. Just as on Earth,
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!