<u>Answer:</u>
<em>Newtons II law: </em>
<em> </em>It is defined as<em> "the net force acting on the object is a product of mass and acceleration of the body"</em> . Also it defines that the <em>"acceleration of an object is dependent on net force and mass of the body".</em>
Let us assume that,a string is attached to the cart, which passes over a pulley along the track. At another end of the string a weight is attached which hangs over the pulley. The hanging weight provides tension in the spring, and it helps in accelerating the cart. We assume that the string is massless and no friction between pulley and the string.
Whenever the hanging weight moves downwards, the cart will accelerate to right side.
<em>For the hanging weight/mass</em>
When hanging weight of mass is m₁ and accelerate due to gravitational force g.
Therefore we can write F = m₁ .g
and the tension acts in upward direction T (negetive)
Now, Fnet = m₁ .g - T
= m₁.a
So From Newtons II law<em> F = m.a</em>
Answer:
a) 
b) 
c) 
Explanation:
<em><u>The knowable variables are </u></em>




Since the three traffic signs are <u>equally spaced</u>, the <u>distance between each sign is
</u>
a) 
b) 
Since we know the velocity in two points and the time the car takes to pass the traffic signs
c) 
Answer:
Its traveling in the +x direction
Explanation:
The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.
Answer:5.17 m/s
Explanation:
Given
let u be the speed at cliff initial point
range over cliff is 1.45 m
and range of projectile is given by


u=3.77 m/s
Conserving Energy

Kinetic energy=Kinetic energy +Potential energy gained
Let v be the initial velocity





Given:
I=8A
t=2second
Potential difference,V=120-100=20volt
Workdone=V×i×t
=20×8×2
=320 joule.