Answer:
Explanation:
If I assume that the wind did not cause the plane to chage its velocity.
The plane will have a velocity of vp = (0*i + 100*j) km/h relative to ground
The cart has a velocity of vc = (0*i - 20*j) km/h relative to the plane
vc' = vc + vp
vc' = (0*i + 100*j) + (0*i - 20*j) = (0*i + 80*j) km/h relative to the ground.
If I assume that the wind move the plane:
The plane will have a velocity of vp = (-40*i + 100*j) km/h relative to ground
The cart has a velocity of vc = (0*i - 20*j) km/h relative to the plane
vc' = vc + vp
vc' = (-40*i + 100*j) + (0*i - 20*j) = (-40*i + 80*j) km/h relative to the ground.
In reality the wind would move the plane a little, not to the full speed of the wind, somewhere between these two values, but without more data it cannot be calculated.
What is the unit c denotes here
Answer:
a) The schematic illustrating is attached
b) The heat transfer to the heat engine is 2142.86 kJ, the heat transfer from the heat engine is 1392.86 kJ
c) The heat transfer to the heat engine is 1648.35 kJ, the heat transfer from the heat engine is 898.35 kJ
Explanation:
b) The heat transfer to the engine and the heat transfer from the engine to the air is:

Where
W = 750 kJ
n = 35% = 0.25
Replacing:


c) The efficiency of Carnot engine is:

The heat transfer to the heat engine is:

The heat transfer from the heat engine is:

1000 kcal because you only get 10% of the energy of the thing you eat
Ok so it would be late and the relative velocity would be 190 m/s because 200 m/s - 10 m/s is 190 m/s. Hope this helps.