Answer: The statement first and the fourth statement are true.
Explanation:
According to Newton's gravitational law, every particle in the universe attracts every other particle with the force of attraction between the masses is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.
As we move to higher altitude, the force of gravity on use decreases because the force of gravity is inversely proportional to the distance.
If the masses of the two objects are more then there will be greater force of gravity between them.
Therefore, the statement first and the fourth statement are true.
I can't seem to figure out the angle between T1 and T2. So suppose, it is 10º; then T2 makes an angle of 35º w/r/t horizontal, and T1 makes an angle of 45º.
Sum the moments about the base of the crane; Σ M = 0. 0 = T2*cos35*L*cos40 + T1*cos45*L*cos40 - T2*sin35*L*sin40 - T1*sin45*L*sin40 - W*(L/2)*sin40 - T1*L*sin40 → length L cancels where W = 18 kN
0 = 0.259*T2 - 43kN T2 = 166 kN
Answer:
Banked
Explanation:
Banked curves are formed when the inner edge is below the outer edge.
It is done in order to ensure the reliability of the frictional force as it varies when the road is wet wet or oily. Thus in order to avoid these problems the curved roads are banked.
Banking of the curve provides the necessary centripetal force, i.e., the horizontal component of the normal reaction force to keep the vehicle i motion and thus helps in reducing the effect of the forward motion force on the vehicle.
Answer:
a = 0.5 m/s²
Explanation:
Applying the definition of angular acceleration, as the rate of change of the angular acceleration, and as the seats begin from rest, we can get the value of the angular acceleration, as follows:
ωf = ω₀ + α*t
⇒ ωf = α*t ⇒ α =
= 
The angular velocity, and the linear speed, are related by the following expression:
v = ω*r
Applying the definition of linear acceleration (tangential acceleration in this case) and angular acceleration, we can find a similar relationship between the tangential and angular acceleration, as follows:
a = α*r⇒ a = 0.067 rad/sec²*7.5 m = 0.5 m/s²