Answer:
D40 = 2.56 × D25
so number is 2.56 multiple of stopping distance @ 25 mph
Explanation:
given data
speed = 40 miles / hour
distance = D40
speed limit = 25 miles / hour
distance = D25
to find out
express number a multiple of stopping distance @ 25 mph
solution
we know here stopping distance is directly proportional to (speed)²
so here speed ratio is
initial speed =
so initial speed = 1.6
so
stopping distance increase = (1.6)²
= (1.6)²
= 2.56
so here
D40 = 2.56 × D25
so number is 2.56 multiple of stopping distance @ 25 mph
dimensions of the bed is given as



now the volume of the bed is given as


now the mass of water in it is given as



<em>so it will contain 1581 kg mass in it</em>
Answer:
v_average = 500 m / min
Explanation:
Average speed is defined
v = (x_{f} -x₀) / Δt
let's look in each section
section 1
the variation of the distance is 800 in a time of 1.4 min
v₁ = 800 / 1.4
v₁ = 571.4 m / min
section 2
distance interval 500 in a 1.6 min time interval
v₂ = 500 / 1.6
v₂ = 312.5 m / min
section 3
distance interval 1200 m in a time 2 min
v₃ = 1200/2
v₃ = 600 m / min
taking the speed of each section we can calculate the average speed
the distance traveled
Δx = 800 + 500 + 1200
Δx = 2500 m
the time spent
Δt = 1.4 + 1.6+ 2
Δt = 5 min
v_average = Δx / Δt
v_average = 2500/5
v_average = 500 m / min
Answer:
T=1022.42 N
Explanation:
Given that
l = 32 cm ,μ = 1.5 g/cm
L =2 m ,V= 344 m/s
The pipe is closed so n= 3 ,for first over tone


f= 129 Hz
The tension in the string given as
T = f²(4l²) μ
Now by putting the values
T = f²(4l²) μ
T = 129² x (4 x 0.32²) x 1.5 x 10⁻³ x 100
T=1022.42 N