Answer:
Given that
T= 0.43 s
Radius of the ball path's , r=2.1 m
a)
We know that
f= 1/T
Here f= frequency
T= Time period
Now by putting the values
f= 1/T
T= 0.43 s
f= 1/0.43
f=2.32 Hz
b)
We know that
V= ω r
ω = 2 π f
ω=Angular speed
V= Linear speed
ω = 2 π f=ω = 2 x π x 2.32 =14.60 rad/s
V= ω r= 14.60 x 2.1 = 30.66 m/s
c)
Acceleration ,a
a =ω ² r
a= 14.6 ² x 2.1 = 447.63 m/s²
We know that g = 10 m/s²
So
a= a/g= 447.63/10 = 44.7 g m/s²
a= 44.7 g m/s²
Simply subtract the two velocities and divide by 8.1,

~~
I hope that helps you out!!
Any more questions, please feel free to ask me and I will gladly help you out!!
~Zoey
Answer:
4. The direct sunlight received by creosote bush in the desert area (in kWh/m2) during a 12 month period
Explanation:
The creosote bush depends on sunlight to produce the food they require through photosynthesis. The shade from the solar panels would reduce the amount of sunlight that the bush receives. This would increase the mortality of the bush.
In order to test the hypothesis the student must record the direct sunlight received by creosote bush in the desert area (in kWh/m2) during a 12 month period. If the plants receive sunlight less than the above amount the plants should start dying. If not then the hypothesis is false.
Hence, the answer is 4. The direct sunlight received by creosote bush in the desert area (in kWh/m2) during a 12 month period.
Answer:
(a) 104 N
(b) 52 N
Explanation:
Given Data
Angle of inclination of the ramp: 20°
F makes an angle of 30° with the ramp
The component of F parallel to the ramp is Fx = 90 N.
The component of F perpendicular to the ramp is Fy.
(a)
Let the +x-direction be up the incline and the +y-direction by the perpendicular to the surface of the incline.
Resolve F into its x-component from Pythagorean theorem:
Fx=Fcos30°
Solve for F:
F= Fx/cos30°
Substitute for Fx from given data:
Fx=90 N/cos30°
=104 N
(b) Resolve r into its y-component from Pythagorean theorem:
Fy = Fsin 30°
Substitute for F from part (a):
Fy = (104 N) (sin 30°)
= 52 N
Answer:

Explanation:
Given that
Length= 2L
Linear charge density=λ
Distance= d
K=1/(4πε)
The electric field at point P



So

Now by integrating above equation
