To solve this problem we will apply the concepts related to the Impulse which can be defined as the product between mass and the total change in velocity. That is to say

Here,
m = mass
Change in velocity
As we can see there are two types of velocity at the moment the object makes the impact,
the first would be the initial velocity perpendicular to the wall and the final velocity perpendicular to the wall.
That is to say,


El angulo dado es de 45° y la velocidad de 25, por tanto


The change of sign indicates a change in the direction of the object.
Therefore the impulse would be as


The negative sign indicates that the pulse is in the opposite direction of the initial velocity.
As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
Answer:
his is an example of the transformation of gravitational potential energy into kinetic energy
Explanation:
The game of juggling bowling is a clear example of the conservation of mechanical energy,
when the bolus is in the upper part of the path mechanical energy is potential energy; As this energy descends, it becomes kinetic energy where the lowest part of the trajectory, just before touching the hand, is totally kinetic.
At the moment of touching the hand, a relationship is applied that reverses the value of the speed, that is, now it is ascending and the cycle repeats.
Therefore this is an example of the transformation of gravitational potential energy into kinetic energy
Answer:
The gravitational acceleration on the planet is slightly less than g.
Explanation:
The period of a pendulum is given by:

where
L is the length of the pendulum
g is the acceleration due to gravity
The formula can also be rewritten as
(1)
In this problem, we have a pendulum which has a period of T=1.00 s on Earth. The length of the same pendulum must be shortened on the distant planet to have the same period of T'=1.00 s: this means that the length of the pendulum on the distant planet, L', is shorter than the length of the pendulum on Earth, L

By looking at formula (1), we see that g (the gravitational acceleration) is directly proportional to L. therefore, if L is shortened on the distant planet, it means that also the value of g is lower than on Earth:
so, the correct answer is
The gravitational acceleration on the planet is slightly less than g.
Answer:
6
Explanation:
m = Mass
c = Specific heat
= Change in temperature
s denotes stone
Heat is given by

Heat for the stone

Number of stones is given by

The number of stones is 6