Answer:
1.75 m/s
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
(50 g) (15 m/s) + (600 g) (0 m/s) = (50 g) (-6 m/s) + (600 g) v
v = 1.75 m/s
Complete question is;
A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².
What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦
Answer:
14.08°
Explanation:
The time covered will be given by the formula;
t = (2V_x•tan θ)/g
t = (2 × 24 × tan 59)/9.8
t = 8.152 s
Now, the slope of the flight path at the point of impact will be given by the formula;
tan α = V_y/V_x
We are given V_x = 24 m/s
V_y will be gotten from the formula;
v = gt
Thus;
V_y = gt
V_y = 9.8 × (8.152) = 78.89 m/s
Thus;
tan α = 78.89/24
tan α = 3.2871
α = tan^(-1) 3.2871
α = 73.08°
Thus ;
Relative angle φ = α - θ = 73.08 - 59 = 14.08°
Answer:
The answer is "4-5-6 because the bank is growing too quickly in the beginning of its turn".
Explanation:
The S-turns is also known as the reference technique, in which the ground track of the aircraft on both sides of a defined ground-based straight-line distance represents 2 different but equivalent circles.
Throughout the S-turns, on either side of the road, a progressively smaller half-circle is formed, and this turn does not stop until the road or reference line is crossed during the early part of the turn, the twists increase too quickly.
I really wish I could be helping you. I don't know.