Answer:
I1 = 0.772 A
Explanation:
<u>Given</u>: R1 = 5.0 ohm, R2 = 9.0 ohm, R3 = 4.0 ohm, V = 6.0 Volts
<u>To find</u>: current I = ? A
<u>Solution: </u>
Ohm's law V= I R
⇒ I = V / R
In order to find R (total) we first find R (p) fro parallel combination. so
1 / R (p) = 1 / R1 + 1/ R2 ∴(P) stand for parallel
R (p) = R1R2 / ( R1 + R2)
R (p) = (5.0 × 9.0) / (5.0 + 9.0)
R (p) = 3.214 ohm
Now R (total) = R (p) + R3 (as R3 is connected in series)
R (total) = 3.214 ohm + 4.0 Ohm
R (total) = 7.214 ohm
now I (total) = 7.214 ohm / 6.0 Volts
I (total) = 1.202 A
This the total current supplied by 6 volts battery.
as voltage drop across R (p) = V = R (p) × I (total)
V (p) = 3.214 ohm × 1.202 A = 3.864 volts
Now current through 5 ohms resister is I1 = V (P) / R1
I1 = 3.864 volts / 5 ohm
I1 = 0.772 A
Answer:B When one bulb burns out, all the others lights stay lit.
Explanation:
Answer:
The wife have to sit at 0.46 L from the middle point of the seesaw.
Explanation:
We need to make a sketch of the seesaw and the loads acting over it.
And by the studying of the Newton's law we can find the equation useful to find the distance of the mother sitting on the seesaw with respect to the center ot the pivot point.
A logical intuition will give us the idea that the mother will be on the side of her son to make the balance.
The maximum momentum with respect to the pivot point (0) will be:

Where L/2 is the half of the distance of the seesaw
Therefore the other loads ( mom + son) must be create a momentum equal to the maximum momentum.
The correct answer is:
<span>paramagnetism
In fact, paramagnetic materials, when they are placed in a magnetic field, they form an internal magnetic field parallel to the external one and in the same direction. However, unlike ferromagnetic materials, they do not retain their magnetization, so when the external magnetic field is removed, their internal induced magnetic field disappears.</span>
Answer:
R=19.5m
= 4.65° S of W
Explanation:
Refer the attached fig.
displacement of the x and y components
x-component displacement is (
) = 
= A
(20°) + B
(40°)
= -12.0
(20°) + 20.0
(40°)
= -19.425m
x-component displacement is (
) = 
= A
(20°) - B
(40°)
= 12.0
(20°) - 20.0
(40°)
= -1.579
resultant displacement
∴
R = 
=
=19.5m
= 
= 
= 4.65° S of W