Answer:
Momentum, p = 7.2 g-m/s
Explanation:
It is given that,
The momentum of an object is 
We need to express momentum in any equivalent units. There can be many solutions of this problem. Some of the units of mass are gram, milligram etc. units of length are meters, mm etc.
Since, 1 kg = 1000 gram
So, 
Therefore, the momentum of the object is 7.2 g-m/s. Hence, this is the required solution.
3 kilometers, it is just 5/60 or 1/12 multiplied by 36.
Note:
The height of a high bar from the floor is h = 2.8 m (or 9.1 ft).
It is not provided in the question, so the standard height is assumed.
g = 9.8 m/s², acceleration due to gravity.
Note that the velocity and distance are measured as positive upward.
Therefore the floor is at a height of h = -2.8 m.
First dismount:
u = 4.0 m/s, initial upward velocity.
Let v = the velocity when the gymnast hits the floor.
Then
v² = u² - 2gh
v² = 16 - 2*9.8*(-2.8) = 70.88
v = 8.42 m/s
Second dismount:
u = -3.0 m/s
v² = (-3.0)² - 2*9.8*(-2.8) = 63.88 m/s
v = 7.99 m/s
The difference in landing velocities is 8.42 - 7.99 = 0.43 m/s.
Answer:
First dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 8.42 m/s downward
Second dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 7.99 m/s downward
The landing velocities differ by 0.43 m/s.
Answer:

Explanation:
We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.
We know that frequency of simple pendulum follows that 
Now, the speed of the father will be
while for the child the speed will be 
The ratio of the father’s speed to the child’s speed will be

Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>