answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
2 years ago
7

Chef Andy tosses an orange in the air, then catches it again at the same height. The orange is in the air for 0.75\,\text s0.75s

0, point, 75, start text, s, end text. We can ignore air resistance.
What was the orange's velocity at the moment it was tossed into the air?
Physics
1 answer:
Alika [10]2 years ago
4 0

Answer:

90.82%digrash silsho

You might be interested in
Kenny and Candy decided to sit on a see-saw while visiting a local play park. Candy, of mass
pochemuha

Answer:

(i) 208 cm from the pivot

(ii) Move further from the pivot

Explanation:

(i) Sum of the moments about the pivot of the seesaw is zero.

∑τ = Iα

(50 kg) (10 N/kg) (2.5 m) + (60 kg) (10 N/kg) x = 0

1250 Nm + 600 N x = 0

x = -2.08 m

Kenny should sit 208 cm on the other side of the pivot.

(ii) To increase the torque, Kenny should move away from the pivot.

4 0
2 years ago
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
2 years ago
A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9 °C.
Sedaia [141]

Answer:

335°C

Explanation:

Heat gained or lost is:

q = m C ΔT

where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.

Heat gained by the water = heat lost by the copper

mw Cw ΔTw = mc Cc ΔTc

The water and copper reach the same final temperature, so:

mw Cw (T - Tw) = mc Cc (Tc - T)

Given:

mw = 390 g

Cw = 4.186 J/g/°C

Tw = 22.6°C

mc = 248 g

Cc = 0.386 J/g/°C

T = 39.9°C

Find: Tc

(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)

Tc = 335

7 0
1 year ago
1)After catching the ball, Sarah throws it back to Julie. However, Sarah throws it too hard so it is over Julie's head when it r
DENIUS [597]

Answer:

1)

v_{oy}=11.29\ m/s

2)

y=7.39\ m

Explanation:

<u>Projectile Motion</u>

When an object is launched near the Earth's surface forming an angle \theta with the horizontal plane, it describes a well-known path called a parabola. The only force acting (neglecting the effects of the wind) is the gravity, which acts on the vertical axis.

The heigh of an object can be computed as

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

Where y_o is the initial height above the ground level, v_{oy} is the vertical component of the initial velocity and t is the time

The y-component of the speed is

v_y=v_{oy}-gt

1) We'll find the vertical component of the initial speed since we have not enough data to compute the magnitude of v_o

The object will reach the maximum height when v_y=0. It allows us to compute the time to reach that point

v_{oy}-gt_m=0

Solving for t_m

\displaystyle t_m=\frac{v_{oy}}{g}

Thus, the maximum heigh is

\displaystyle y_m=y_o+\frac{v_{oy}^2}{2g}

We know this value is 8 meters

\displaystyle y_o+\frac{v_{oy}^2}{2g}=8

Solving for v_{oy}

\displaystyle v_{oy}=\sqrt{2g(8-y_o)}

Replacing the known values

\displaystyle v_{oy}=\sqrt{2(9.8)(8-1.5)}

\displaystyle v_{oy}=11.29\ m/s

2) We know at t=1.505 sec the ball is above Julie's head, we can compute

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

\displaystyle y=1.5+(11.29)(1.505)-\frac{9.8(1.505)^2}{2}

\displaystyle y=1.5\ m+16,991\ m-11.098\ m

y=7.39\ m

5 0
2 years ago
Calculate the mass of the air contained in a room that measures 2.50 m x 5.50 m x 3.00 m if the density of air is 1.29 g/dm3.53.
Law Incorporation [45]

Answer:

5.32\cdot 10^4 g

Explanation:

First of all, we need to find the volume of the room, which is given by

V=2.50 m \cdot 5.50 m \cdot 3.00 m =41.3 m^3

Now we  can find the mass of the air by using

m=dV

where

d=1.29 g/dm^3 is the density of the air

V=41.3 m^3 = 41,300 dm^3 is the volume of the room

Substituting,

m=(1.29)(41300)=5.32\cdot 10^4 g

6 0
2 years ago
Other questions:
  • As an object moves along the x axis, many measurements are made of its position, enough to generate a smooth, accurate graph of
    12·2 answers
  • Two negative charges that are both -0.3C push each other apart with a force of 19.2 N. How far apart are the two charges?
    15·1 answer
  • The famous leaning tower of pisa doesn't topple over because its center of gravity is
    14·1 answer
  • The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both the plug and the sleeve
    13·1 answer
  • A 1.7-kg block of wood rests on a rough surface. A 0.011-kg bullet strikes the block with a speed of 670 m/s and embeds itself.
    5·1 answer
  • A semi-trailer is coasting downhill along a mountain highway when its brakes fail. The driver pulls onto a runaway truck ramp th
    13·1 answer
  • A packing crate rests on a horizontal surface. It is acted on by three horizontal forces: 600 N to the left, 200 N to the right,
    6·1 answer
  • A 50-kg meteorite moving at 1000 m/s strikes Earth. Assume the velocity is along the line joining Earth's center of mass and the
    13·1 answer
  • Q1: An object with a charge of 1.2 C is located 4.5 m away from a second object that has a charge of 0.36 C. Find the electrical
    6·1 answer
  • 15 PLEASE HELP
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!