Answer:
x_total = (A + B) cos (wt + Ф)
we have the sum of the two waves in a phase movement
Explanation:
In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.
Max
x₁ = A cos (wt + Ф)
Jimmy
x₂ = B cos (wt + Ф)
total movement
x_total = (A + B) cos (wt + Ф)
Therefore we have the sum of the two waves in a phase movement
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table.
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere.
I = 7/5*mR^2 M = 7/5*m
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
Answer:
37357 sec
or 622 min
or 10.4 hrs
Explanation:
GIVEN DATA:
Lifting weight 80 kg
1 cal = 4184 J
from information given in question we have
one lb fat consist of 3500 calories = 3500 x 4184 J
= 14.644 x 10^6 J
Energy burns in 1 lift = m g h
= 80 x 9.8 x 1 = 784 J
lifts required 
= 18679
from the question,
1 lift in 2 sec.
so, total time = 18679 x 2 = 37357 sec
or 622 min
or 10.4 hrs