Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
Angular displacement of the turbine is 234.62 radian
Explanation:
initial angular speed of the turbine is



similarly final angular speed is given as



angular acceleration of the turbine is given as

now we have to find the angular displacement is given as



Answer:
Therefore the required solution is

Explanation:
Given vibrating system is

Consider U(t) = A cosωt + B sinωt
Differentiating with respect to t
U'(t)= - A ω sinωt +B ω cos ωt
Again differentiating with respect to t
U''(t) = - A ω² cosωt -B ω² sin ωt
Putting this in given equation


Equating the coefficient of sinωt and cos ωt
.........(1)
and

........(2)
Solving equation (1) and (2) by cross multiplication method


and 
Therefore the required solution is

Answer:
The objects must have the same acceleration and the objects must exert the same magnitude force on each other.
Explanation:
The objects must have the same weight: FALSE. This is not needed, any two object can move together in contact no matter their mass.
The objects must have the same acceleration: TRUE. If they have different accelerations, they will separate since the distance each of them travel at a given time will be different.
The objects must have the same net force acting on them: FALSE. This is not needed, since what matters is acceleration, and a=F/m, so if both objects have different net force acting on them, they could have different masses also to compensate and result in the same acceleration.
The objects must exert the same magnitude force on each other: TRUE, this is the 3rd Newton Law, an action must follow the same reaction.
Answer:
53.63 μA
Explanation:
radius of solenoid, r = 6 cm
Area of solenoid = 3.14 x 6 x 6 = 113.04 cm^2 = 0.0113 m^2
n = 17 turns / cm = 1700 /m
di / dt = 5 A/s
The magnetic field due to the solenoid is given by
B = μ0 n i
dB / dt = μ0 n di / dt
The rate of change in magnetic flux linked with the solenoid =
Area of coil x dB/dt
= 3.14 x 8 x 8 x 10^-4 x μ0 n di / dt
= 3.14 x 64 x 10^-4 x 4 x 3.14 x 10^-7 x 1700 x 5 = 2.145 x 10^-4
The induced emf is given by the rate of change in magnetic flux linked with the coil.
e = 2.145 x 10^-4 V
i = e / R = 2.145 x 10^-4 / 4 = 5.36 x 10^-5 A = 53.63 μA