answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiks02 [169]
1 year ago
6

A cyclist traveling at 5m/s uniformly accelerates up to 10 m/s in 2 seconds. Each tire of the bike has a 35 cm radius, and a sma

ll pebble is caught in the tread of one of them. (A) What is the angular acceleration of the pebble during those two seconds
Physics
1 answer:
konstantin123 [22]1 year ago
8 0

Answer:

a=2.5\ m/s^2

Explanation:

Given that,

Initial speed, u = 5 m/s

Final speed, v = 10 m/s

Time, t = 2 s

The radius of the tire of the bike, r = 35 cm

We need to find the angular acceleration of the pebble during those two seconds. It can be calculated as follows.

a=\dfrac{v-u}t{}\\\\a=\dfrac{10-5}{2}\\\\a=2.5\ m/s^2

So, the required angular acceleration of the pebble is equal to 2.5\ m/s^2.

You might be interested in
A FBD of a rocket launching into space should include:
Vladimir [108]

Answer:

Explanation:

the force of the rocket engine pushing it up,  the force of gravity pulling it down,    maybe some force of air resistance as the rocket goes fast,   hmmm    Free Body Diagrams  (FBD)  should have any and all forces on the model,  unless they are negligible . or so slight they really make little difference in the total  outcome.  

3 0
1 year ago
Suppose a rectangular piece of aluminum has a length D, and its square cross section has the dimensions W XW, where D (W x W) to
Ludmilka [50]

Answer:

R₂ / R₁ = D / L

Explanation:

The resistance of a metal is

        R = ρ L / A

Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section

We apply this formal to both configurations

Small face measurements (W W)

The length is

         L = W

Area  

         A = W W = W²

        R₁ = ρ W / W² = ρ / W

Large face measurements (D L)

       Length L = D= 2W

       Area     A = W L

     R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L

The relationship is

    R₂ / R₁ = 2W²/L

6 0
2 years ago
You stand on a bathroom scale in a moving elevator. what happens to the scale reading if the cable holding the elevator suddenly
Viefleur [7K]

A bathroom scales works due to gravity. Under normal conditions, a reading can be obtained when your body is pushing some force on the scale. However in this case, since you and the scale are both moving downwards, so your body is no longer pushing on the scale. Therefore the answer is:

<span>The reading will drop to 0 instantly</span>

7 0
2 years ago
Read 2 more answers
A bicycle rider has a speed of 19.0 m/s at a height of 55.0 m above sea level when he begins coasting down hill. The mass of the
lukranit [14]

Answer:

The mechanical energy of the rider at any height will be 6.34 × 10⁴ J.

Explanation:

Hi there!

The mechanical energy of the rider is calculated as the sum of the gravitational potential energy plus the kinetic energy. Since there are no dissipative forces (like friction), the mechanical energy of the rider at a height of 55.0 m above the sea level will be the same at a height of 25.0 m (or at any height), because the loss in potential energy will be compensated by a gain in kinetic energy, according to the law of conservation of energy.

Then, calculating the potential and kinetic energy at 55.0 m and 19 m/s, we can obtain the mechanical energy that will be constant:

Mechanical energy = PE + KE

Where:

PE = potential energy.

KE = kinetic energy.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

Then, the potential energy of the rider will be:

PE = 88.0 kg · 9.81 m/s² · 55.0 m = 4.75 × 10⁴ J

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

Where "m" is the mass of the object and "v" its velocity. Then:

KE = 1/2 · 88.0 kg · (19.0 m/s)²

KE = 1.59 × 10⁴ J

The mechanical energy of the rider will be:

Mechanical energy = PE + KE = 4.75 × 10⁴ J + 1.59 × 10⁴ J = 6.34 × 10⁴ J

This mechanical energy is constant because when the rider coast down the hill, its potential energy is being converted into kinetic energy, so that the sum of potential energy plus kinetic energy remains constant.

5 0
2 years ago
How do some businesses believe VR is affecting their training for employees?
katen-ka-za [31]
They think everything is involved with tech , some business like going old school , it’s artificiaciality is off meaning consequences aren’t actually accurate like in real life , lack of flexibility can’t change anything because it’s programmed so you can’t actually act question or change scenarios ,it costs too much as well , can be health risk can cause stress and anxiety,
3 0
1 year ago
Other questions:
  • A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
    13·2 answers
  • Charina says that when waves interact with an object, they will interfere with the object, and that when waves interact with oth
    13·2 answers
  • Consider a double-slit with a distance between the slits of 0.04 mm and slit width of 0.01 mm. Suppose the screen is a distance
    7·1 answer
  • A toy car has a battery-powered fan attached to it such that the fan creates a constant force that is exerted on the car so that
    11·2 answers
  • An unstable nucleus which has a tendency to spontaneously change its form with the emission of high-energy particles or photons
    6·2 answers
  • 2.0 kg of solid gold (Au) at an initial temperature of 1000K is allowed to exchange heat with 1.5 kg of liquid gold at an initia
    5·1 answer
  • Which of the following statements about stages of nuclear burning (i.e., first-stage hydrogen burning, second-stage helium burni
    6·1 answer
  • At time t=0 , a cart is at x=10 m and has a velocity of 3 m/s in the −x -direction. The cart has a constant acceleration in the
    9·1 answer
  • Shows an object suspended from two ropes. The weight of the object is 360 N. The magnitude of the tension
    11·1 answer
  • A 56 kg diver runs and dives from the edge of a cliff into the water which is located 4.0 m below. If she is moving at 8.0 m/s t
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!