Answer:
circuit sketched in first attached image.
Second attached image is for calculating the equivalent output resistance
Explanation:
For calculating the output voltage with regarding the first image.

![Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V](https://tex.z-dn.net/?f=Vout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5B%2F%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DVout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5C%5CVout%20%3D%205%20%5Cfrac%7B2%7D%7B5%7D%20%3D%202%20V)
For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.
so.

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.
if the -5% is applied to both resistors the Voltage is still 5V because the quotient has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:




so.

Answer : The correct option is, (d) 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of copper = 
= specific heat of water = 
= mass of copper = 120 g
= mass of water = 300 g
= final temperature of mixture = 
= initial temperature of copper = ?
= initial temperature of water =
Now put all the given values in the above formula, we get:


Therefore, the temperature of the kiln was, 
Force = mass * acceleration
10 N - 2 N = 20 kg * acceleration
8 N = 20 kg * acceleration
8 / 20 = acceleration
2/5 m/s^2 = acceleration
Answer:
The frequency of the photon decreases upon scattering
Explanation:
Here we note that when a photon is scattered by a charged particle, it is referred to as Compton scattering.
Compton scattering results in a reduction of the energy of the photon and hence an increase in the wavelength (from λ to λ') of the photon known as Compton effect.
Therefore, since the wavelength increases, we have from
λf = λ'f' = c
f = c/λ
Where:
f and f' = The frequency of the motion of the photon before and after the scattering
c = Speed of light (constant)
We have that the frequency, f, is inversely proportional to the wavelength, λ as follows;
f = c/λ
As λ = increases, and c is constant, f decreases, therefore, the frequency of the photon decreases upon scattering.
Answer:

Explanation:
Assuming uniform spread of sound with no significant reflections or absorption. We know that sound intensity varies
where r is the distance
Since intensity is given then when at 3 m


Since we have the constant then at 4m
Intensity, 