answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
1 year ago
5

A uniform 40-N board supports two children weighing 500 N and 350 N. If the support is at the center of the board and the 500-N

child is 1.5 m from its center, How far is the 350-N child from the center?
Physics
1 answer:
serg [7]1 year ago
5 0

Answer:

b= 2.14 m

Explanation:

Given that

Weight of the board ,wt = 40 N

Wight of the first children , wt₁=500 N

Weight of the second children ,wt₂ = 350 N

The distance of the 500 N child from center ,a= 1.5 m

lets take distance of the 350 N child from center = b m

Now by taking the moment about the center of the board

We know that moment = Force x Perpendicular distance from the force

wt₁ x a = wt₂ x b

500 x 1.5 = 350 x b

b= 2.14 m

Therefore the distance of the 350 N weight child from the center is 2.14 m.

You might be interested in
A standard 1 kilogram weight is a cylinder 51.0 mm in height and 42.0 mm in diameter. Determine the density of the material
worty [1.4K]

Answer:

14160 kg/m^3

Explanation:

First of all, we need to find the volume of the cylinder.

The volume of the cylinder is given by:

V=\pi r^2 h

where:

r=\frac{d}{2}=\frac{42.0 mm}{2}=21.0 mm=0.021 m is the radius

h=51.0 mm=0.051 m is the height

Substituting, we find

V=\pi (0.021 m)^2 (0.051 m)=7.1 \cdot 10^{-5} m^3

And the density is given by

d=\frac{m}{V}

where m = 1 kg is the mass. Substituting, we find

d=\frac{1 kg}{7.1\cdot 10^{-5} m^3}=14,160 kg/m^3

3 0
2 years ago
An insurance company hired your group to help investigate an insurance claim following a car accident. In the accident, two cars
Romashka-Z-Leto [24]

Answer:

v=8m/s

Explanation:

To solve this problem we have to take into account, that the work done by the friction force, after the collision must equal the kinetic energy of both two cars just after the collision. Hence we have

W_{f}=E_{k}\\W_{f}=\mu N=\mu(m_1+m_1)g\\E_{k}=\frac{1}{2}[m_1+m_2]v^2

where

mu: coefficient of kinetic friction

g: gravitational acceleration

We can calculate the speed of the cars after the collision by using

W_f=(0.7)(1650kg+1900kg)(9.8\frac{m}{s^2})=24353J\\24353J=\frac{1}{2}(1650kg+1900kg)v^2\\v=\sqrt{\frac{24353J}{1775kg}}=3.70\frac{m}{s}

Now , we can compute the speed of the second car by taking into account the conservation of the momentum

P_b=P_a\\m_1v_1+m_2v_2=(m_1+m_2)v\\\\v_2=\frac{(m_1+m_2)v-m_1v_1}{m_1}\\\\v_2=\frac{(1650kg+1900kg)(3.7\frac{m}{s})-(1650kg)(16\frac{m}{s})}{(1650kg)}\\\\v_2=8\frac{m}{s}

the car did not exceed the speed limit

Hope this helps!!

7 0
2 years ago
Read 2 more answers
Light from a monochromatic source shines through a double slit onto a screen 5.00 m away. The slits are 0.180 mm apart. The dark
Nitella [24]

Answer:

Wavelength of incident light, \lambda = 612 nm

Given:

Distance between slit and screen, x = 5.00 m

slit width, d = 0.180 mm

width of the fringe, \beta = 1.70 cm = 0.017 m

Solution:

To calculate the wavelength of the incident light, \lambda:

\beta = \frac{x\lambda }{d}

\lambda = \frac{\beta d}{x}

\lambda = \frac{0.017\times 0.180\times 10^{- 3}}{5} = 6.12\times 10^{- 7}m = 612 nm

\lambda = 612 nm

4 0
2 years ago
A policeman starts giving chase 60 seconds after a stolen car zooms by at 108 km/hr. At what minimum speed should he drive if he
Iteru [2.4K]

Answer:

30.93 m/s

Explanation:

Given that, the speed of stolen car is,

v_{s} =108km/hr\\v_{s} =108\times \frac{5}{18}m/s\\ v_{s} =30m/s

As policeman start chasing the stolen car after 60 seconds.

Now suppose the speed of policeman car is, v_{p}

The policeman catches the stolen car at a distance of,

S=60km\\S=60000m

Now the distance covered by the policeman in time t is v_{p}\times t

And the distane cover by the thief in stolen car in time(t+60s) is v_{s}\times (t+60sec).

And these distances are equal and they are equal to 60000 m.

Therefore,

v_{p}\times t=v_{s}\times (t+60sec)=60000m

Therfore,

v_{s}\times (t+60sec)=60000m\\30m/s\times (t+60sec)=60000m\\(t+60s)=2000s\\t=1940s

Now use this value to solve for minimum speed of policeman's car.

v_{p}\times 1940=60000\\v_{p}=30.93 m/s

Therefore minimum speed of policeman's car is 30.93 m/s.

6 0
2 years ago
Burl the painter weighs 600 Newtons. He stands in the exact middle of his stage. There are two scale readings attached to the tw
chubhunter [2.5K]

Answer:

T = 300 N

Explanation:

As we know that the painter is standing at the middle of the scaffold

So here the two ropes will exert same tension on the scaffold

So we will have

T_1 + T_2 = W

also we know

T_1 = T_2

so we will have

2T = W

T = \frac{W}{2}

so tension is half of the weight in both the strings

So it is

T = 300 N

6 0
1 year ago
Other questions:
  • A 4.00 kg rock is rolling 10.0m/s find its kinetic energy
    13·1 answer
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • Han and Greedo fire their blasters at each other. The blasts are loud, and the intensity of the sound spreads through the cantin
    11·2 answers
  • If an electronic circuit experiences a loss of 3 decibels with an input power of 6 watts, what would its output power be, to the
    9·2 answers
  • A roller of radius 12.5 cm turns at 14 revolutions per second. What is the linear velocity of the roller in meters per second?
    11·2 answers
  • Hippos spend much of their lives in water, but amazingly, they don’t swim. manatees, They have, like little very body fat. The d
    8·1 answer
  • Which situation describes the highest rate of power?
    10·1 answer
  • 10 C of charge are placed on a spherical conducting shell. A point particle with a charge of –3C is placed at the center of the
    15·1 answer
  • A transition metal complex in solution has an absorption peak at 450 nm, in the blue region of the visible spectrum. What color
    10·1 answer
  • A 500 kg motorcycle accelerates at a rate of 2 m/s .how much force was applied to the motorcycle?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!