Answer:
6.5 m/s^2
Explanation:
The net force acting on the yo-yo is
F_net = mg-T
ma=mg-T
now T= mg-ma
net torque acting on the yo-yo is
τ_net = Iα
I= moment of inertia (= 0.5 mr^2 )
α = angular acceleration
τ_net = 0.5mr^2(a/r)
Tr= 0.5mr^2(a/r)
(mg-ma)r=0.5mr^2(a/r)
a(1/2+1)=g
a= 2g/3
a= 2×9.8/3 = 6.5 m/s^2
As Saba was wearing high heels they are long from the bottom so they sank however Sana was wearing snow boots which means they were flat and so she didn’t sink.
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
Answer:
Diameter of the cylinder will be 
Explanation:
We have given young's modulus of steel
Change in length 
Length of rod 
Load F = 11100 KN
Strain is given by 
We know that young's modulus 
So 

We know that stress 
So 

So 
Answer:
0.83 ω
Explanation:
mass of flywheel, m = M
initial angular velocity of the flywheel, ω = ωo
mass of another flywheel, m' = M/5
radius of both the flywheels = R
let the final angular velocity of the system is ω'
Moment of inertia of the first flywheel , I = 0.5 MR²
Moment of inertia of the second flywheel, I' = 0.5 x M/5 x R² = 0.1 MR²
use the conservation of angular momentum as no external torque is applied on the system.
I x ω = ( I + I') x ω'
0.5 x MR² x ωo = (0.5 MR² + 0.1 MR²) x ω'
0.5 x MR² x ωo = 0.6 MR² x ω'
ω' = 0.83 ω
Thus, the final angular velocity of the system of flywheels is 0.83 ω.